494 research outputs found

    Molecular Dynamics Driven Design of pH-Stabilized Mutants of MNEI, a Sweet Protein

    Get PDF
    MNEI is a single chain derivative of monellin, a plant protein that can interact with the human sweet taste receptor, being therefore perceived as sweet. This unusual physiological activity makes MNEI a potential template for the design of new sugar replacers for the food and beverage industry. Unfortunately, applications of MNEI have been so far limited by its intrinsic sensitivity to some pH and temperature conditions, which could occur in industrial processes. Changes in physical parameters can, in fact, lead to irreversible protein denaturation, as well as aggregation and precipitation. It has been previously shown that the correlation between pH and stability in MNEI derives from the presence of a single glutamic residue in a hydrophobic pocket of the protein. We have used molecular dynamics to study the consequences, at the atomic level, of the protonation state of such residue and have identified the network of intramolecular interactions responsible for MNEI stability at acidic pH. Based on this information, we have designed a pH-independent, stabilized mutant of MNEI and confirmed its increased stability by both molecular modeling and experimental techniques

    The biofilm matrix of Pseudomonas sp. OX1 grown on phenol is mainly constituted by alginate oligosaccharides

    Get PDF
    The structure of the major constituent of the biofilm matrix produced by Pseudomonas sp. OX1, when grown on phenol as the sole carbon source is described. This investigation, carried out by chemical analysis, NMR spectroscopy and MALDI-TOF MS spectrometry, showed the presence of an oligosaccharide blend with the typical alginate structure, namely (1-->4) substituted beta-D-mannuronic (ManA) and alpha-L-guluronic acid (GulA). GulA residues were non-acetylated whereas ManA was always O-acetylated at C-2 or C-3

    Acetate: friend or foe? Efficient production of a sweet protein in Escherichia coli BL21 using acetate as a carbon source

    Get PDF
    Escherichia coli is, to date, the most used microorganism for the production of recombinant proteins and biotechnologically relevant metabolites. High density cell cultures allow efficient biomass and protein yields. However, their main limitation is the accumulation of acetate as a by-product of unbalanced carbon metabolism. Increased concentrations of acetate can inhibit cellular growth and recombinant protein production, and many efforts have been made to overcome this problem. On the other hand, it is known that E. coli is able to grow on acetate as the sole carbon source, although this mechanism has never been employed for the production of recombinant proteins

    Molecular Structure of Endotoxins from Gram-negative Marine Bacteria: An Update

    Get PDF
    Marine bacteria are microrganisms that have adapted, through millions of years, to survival in environments often characterized by one or more extreme physical or chemical parameters, namely pressure, temperature and salinity. The main interest in the research on marine bacteria is due to their ability to produce several biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents. Nonetheless, lipopolysaccharides (LPSs), or their portions, from Gram-negative marine bacteria, have often shown low virulence, and represent potential candidates in the development of drugs to prevent septic shock. Besides, the molecular architecture of such molecules is related to the possibility of thriving in marine habitats, shielding the cell from the disrupting action of natural stress factors. Over the last few years, the depiction of a variety of structures of lipids A, core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been given. In particular, here we will examine the most recently encountered structures for bacteria belonging to the genera Shewanella, Pseudoalteromonas and Alteromonas, of the Îł-Proteobacteria phylum, and to the genera Flavobacterium, Cellulophaga, Arenibacter and Chryseobacterium, of the Cytophaga-Flavobacterium-Bacteroides phylum. Particular attention will be paid to the chemical features expressed by these structures (characteristic monosaccharides, non-glycidic appendages, phosphate groups), to the typifying traits of LPSs from marine bacteria and to the possible correlation existing between such features and the adaptation, over years, of bacteria to marine environments

    QSAR Model for Cytotoxicity of Silica Nanoparticles on Human Embryonic Kidney Cells1

    Get PDF
    Abstract A predictive model for cytotoxicity of 20 and 50 nm silica nanoparticles has been built using so-called optimal descriptors as mathematical functions of size, concentration and exposure time. These parameters have been encoded into 31 combinations 'concentration-exposure-size'. The calculation has been carried out by means of the CORAL software ( http://www.insilico.eu/coral/ ) using three random splits of the obtained systems into training and test sets. The statistical quality of the best model for cell viability (%) of cultured human embryonic kidney cells (HEK293) exposed to different concentrations of silica nanoparticles measured by MTT assay is satisfactory

    Sweeter and stronger: Enhancing sweetness and stability of the single chain monellin MNEI through molecular design

    Get PDF
    Sweet proteins are a family of proteins with no structure or sequence homology, able to elicit a sweet sensation in humans through their interaction with the dimeric T1R2-T1R3 sweet receptor. In particular, monellin and its single chain derivative (MNEI) are among the sweetest proteins known to men. Starting from a careful analysis of the surface electrostatic potentials, we have designed new mutants of MNEI with enhanced sweetness. Then, we have included in the most promising variant the stabilising mutation E23Q, obtaining a construct with enhanced performances, which combines extreme sweetness to high, pH-independent, thermal stability. The resulting mutant, with a sweetness threshold of only 0.28 mg/L (25 nM) is the strongest sweetener known to date. All the new proteins have been produced and purified and the structures of the most powerful mutants have been solved by X-ray crystallography. Docking studies have then confirmed the rationale of their interaction with the human sweet receptor, hinting at a previously unpredicted role of plasticity in said interactio

    Taking stock of legal ontologies: a feature-based comparative analysis

    Get PDF
    International audienceOntologies represent the standard way to model the knowledge about specific domains. This holds also for the legal domain where several ontologies have been put forward to model specific kinds of legal knowledge. Both for standard users and for law scholars, it is often difficult to have an overall view on the existing alternatives, their main features and their interlinking with the other ontologies. To answer this need, in this paper, we address an analysis of the state-of-the-art in legal ontologies and we characterise them along with some distinctive features. This paper aims to guide generic users and law experts in selecting the legal ontology that better fits their needs and in understanding its specificity so that proper extensions to the selected model could be investigated

    A Survey on the Distribution of Ovothiol and ovoA Gene Expression in Different Tissues and Cells: A Comparative Analysis in Sea Urchins and Mussels

    Get PDF
    Ovothiols are histidine-derived thiols produced by a variety of marine invertebrates, protists and bacteria. These compounds, which are among the strongest natural antioxidants, are involved in controlling the cellular redox balance due to their redox exchange with glutathione. Although ovothiols were initially reported as protective agents against environmental stressors, new evidence suggests that they can also act as pheromones and participate in fundamental biological processes such as embryogenesis. To get further insight into the biological roles of ovothiols, we compared ovothiol biosynthesis in the sea urchin Paracentrotus lividus and in the mussel Mytilus galloprovincialis, the two species that represent the richest sources of these compounds among marine invertebrates. Ovothiol content was measured in different tissues and in the immune cells from both species and the expression levels of ovoA, the gene responsible for ovothiol biosynthesis, was inferred from publicly available transcriptomes. A comparative analysis of ovothiol biosynthesis in the two species allowed the identification of the tissues and cells synthesizing the metabolite and highlighted analogies and differences between sea urchins and mussels. By improving our knowledge on the biological roles of ovothiols and pointing out the existence of sustainable natural sources for their isolation, this study provides the basis for future biotechnological investigations on these valuable compounds

    A Super Stable Mutant of the Plant Protein Monellin Endowed with Enhanced Sweetness

    Get PDF
    Sweet proteins are a class of proteins with the ability to elicit a sweet sensation in humans upon interaction with sweet taste receptor T1R2/T1R3. Single-chain Monellin, MNEI, is among the sweetest proteins known and it could replace sugar in many food and beverage recipes. Nonetheless, its use is limited by low stability and high aggregation propensity at neutral pH. To solve this inconvenience, we designed a new construct of MNEI, dubbed Mut9, which led to gains in both sweetness and stability. Mut9 showed an extraordinary stability in acidic and neutral environments, where we observed a melting temperature over 20 C higher than that of MNEI. In addition, Mut9 resulted twice as sweet than MNEI. Both proteins were extensively characterized by biophysical and sensory analyses. Notably, Mut9 preserved its structure and function even after 10 min boiling, with the greatest differences being observed at pH 6.8, where it remained folded and sweet, whereas MNEI lost its structure and function. Finally, we performed a 6-month shelf-life assessment, and the data confirmed the greater stability of the new construct in a wide range of conditions. These data prove that Mut9 has an even greater potential for food and beverage applications than MNEI
    • 

    corecore