61 research outputs found

    TRPA1 mediates aromatase inhibitor-evoked pain by the aromatase substrate androstenedione

    Get PDF
    Aromatase inhibitors (AI) induce painful musculoskeletal symptoms (AIMSS), which are dependent upon the pain transducing receptor TRPA1. However, as the AI concentrations required to engage TRPA1 in mice are higher than those found in the plasma of patients, we hypothesized that additional factors may cooperate to induce AIMSS. Here we report that the aromatase substrate androstenedione, unique among several steroid hormones, targeted TRPA1 in peptidergic primary sensory neurons in rodent and human cells expressing the native or recombinant channel. Androstenedione dramatically lowered the concentration of letrozole required to engage TRPA1. Notably, addition of a minimal dose of androstenedione to physiologically ineffective doses of letrozole and oxidative stress byproducts produces AIMSS-like behaviors and neurogenic inflammatory responses in mice. Elevated androstenedione levels cooperated with low letrozole concentrations and inflammatory mediators were sufficient to provoke AIMSS-like behaviors. The generation of such painful conditions by small quantities of simultaneously administered TRPA1 agonists justifies previous failure to identify a precise link between AIs and AIMSS, underscoring the potential of channel antagonists to treat AIMSS

    TRPA1/NOX in the soma of trigeminal ganglion neurons mediates migraine-related pain of glyceryl trinitrate in mice

    Get PDF
    Glyceryl trinitrate is administered as a provocative test for migraine pain. Glyceryl trinitrate causes prolonged mechanical allodynia in rodents, which temporally correlates with delayed glyceryl trinitrate-evoked migraine attacks in patients. However, the underlying mechanism of the allodynia evoked by glyceryl trinitrate is unknown. The proalgesic transient receptor potential ankyrin 1 (TRPA1) channel, expressed by trigeminal nociceptors, is sensitive to oxidative stress and is targeted by nitric oxide or its by-products. Herein, we explored the role of TRPA1 in glyceryl trinitrate-evoked allodynia. Systemic administration of glyceryl trinitrate elicited in the mouse periorbital area an early and transient vasodilatation and a delayed and prolonged mechanical allodynia. The systemic, intrathecal or local administration of selective enzyme inhibitors revealed that nitric oxide, liberated from the parent drug by aldehyde dehydrogenase 2 (ALDH2), initiates but does not maintain allodynia. The central and the final phases of allodynia were respectively associated with generation of reactive oxygen and carbonyl species within the trigeminal ganglion. Allodynia was absent in TRPA1-deficient mice and was reversed by TRPA1 antagonists. Knockdown of neuronal TRPA1 by intrathecally administered antisense oligonucleotide and selective deletion of TRPA1 from sensory neurons in Advillin-Cre; Trpa1fl/fl mice revealed that nitric oxide-dependent oxidative and carbonylic stress generation is due to TRPA1 stimulation, and resultant NADPH oxidase 1 (NOX1) and NOX2 activation in the soma of trigeminal ganglion neurons. Early periorbital vasodilatation evoked by glyceryl trinitrate was attenuated by ALDH2 inhibition but was unaffected by TRPA1 blockade. Antagonists of the calcitonin gene-related peptide receptor did not affect the vasodilatation but partially inhibited allodynia. Thus, although both periorbital allodynia and vasodilatation evoked by glyceryl trinitrate are initiated by nitric oxide, they are temporally and mechanistically distinct. While vasodilatation is due to a direct nitric oxide action in the vascular smooth muscle, allodynia is a neuronal phenomenon mediated by TRPA1 activation and ensuing oxidative stress. The autocrine pathway, sustained by TRPA1 and NOX1/2 within neuronal cell bodies of trigeminal ganglia, may sensitize meningeal nociceptors and second order trigeminal neurons to elicit periorbital allodynia, and could be of relevance for migraine-like headaches evoked by glyceryl trinitrate in humans

    TRPA1 receptor stimulation by hydrogen peroxide is critical to trigger hyperalgesia and inflammation in a model of acute gout

    Get PDF
    AbstractAcute gout attacks produce severe joint pain and inflammation associated with monosodium urate (MSU) crystals leading to oxidative stress production. The transient potential receptor ankyrin 1 (TRPA1) is expressed by a subpopulation of peptidergic nociceptors and, via its activation by endogenous reactive oxygen species, including hydrogen peroxide (H2O2), contributes to pain and neurogenic inflammation. The aim of this study was to investigate the role of TRPA1 in hyperalgesia and inflammation in a model of acute gout attack in rodents. Inflammatory parameters and mechanical hyperalgesia were measured in male Wistar rats and in wild-type (Trpa1+/+) or TRPA1-deficient (Trpa1−/−) male mice. Animals received intra-articular (ia, ankle) injection of MSU. The role of TRPA1 was assessed by receptor antagonism, gene deletion or expression, sensory fiber defunctionalization, and calcitonin gene-related peptide (CGRP) release. We found that nociceptor defunctionalization, TRPA1 antagonist treatment (via ia or oral administration), and Trpa1 gene ablation abated hyperalgesia and inflammatory responses (edema, H2O2 generation, interleukin-1β release, and neutrophil infiltration) induced by ia MSU injection. In addition, we showed that MSU evoked generation of H2O2 in synovial tissue, which stimulated TRPA1 producing CGRP release and plasma protein extravasation. The MSU-elicited responses were also reduced by the H2O2-detoxifying enzyme catalase and the reducing agent dithiothreitol. TRPA1 activation by MSU challenge-generated H2O2 mediates the entire inflammatory response in an acute gout attack rodent model, thus strengthening the role of the TRPA1 receptor and H2O2 production as potential targets for treatment of acute gout attacks

    Functional Characterization of Human ProNGF and NGF Mutants: Identification of NGF P61SR100E as a "Painless" Lead Investigational Candidate for Therapeutic Applications

    No full text
    Nerve Growth Factor (NGF) holds a great therapeutic promise for Alzheimer's disease, diabetic neuropathies, ophthalmic diseases, dermatological ulcers. However, the necessity for systemic delivery has hampered the clinical applications of NGF due to its potent pro-nociceptive action. A "painless" human NGF (hNGF R100E) mutant has been engineered. It has equal neurotrophic potency to hNGF but a lower nociceptive activity. We previously described and characterized the neurotrophic and nociceptive properties also of the hNGF P61S and P61SR100E mutants, selectively detectable against wild type hNGF. However, the reduced pain-sensitizing potency of the "painless" hNGF mutants has not been quantified
    • …
    corecore