12 research outputs found

    Impact of Climate Change on Water Resources in the Kilombero Catchment in Tanzania

    Get PDF
    This article illustrates the impact of potential future climate scenarios on water quantity in time and space for an East African floodplain catchment surrounded by mountainous areas. In East Africa, agricultural intensification is shifting from upland cultivation into the wetlands due to year-round water availability and fertile soils. These advantageous agricultural conditions might be hampered through climate change impacts. Additionally, water-related risks, like droughts and flooding events, are likely to increase. Hence, this study investigates future climate patterns and their impact on water resources in one production cluster in Tanzania. To account for these changes, a regional climate model ensemble of the Coordinated Regional Downscaling Experiment (CORDEX) Africa project was analyzed to investigate changes in climatic patterns until 2060, according to the RCP4.5 (representative concentration pathways) and RCP8.5 scenarios. The semi-distributed Soil and Water Assessment Tool (SWAT) was utilized to analyze the impacts on water resources according to all scenarios. Modeling results indicate increasing temperatures, especially in the hot dry season, intensifying the distinctive features of the dry and rainy season. This consequently aggravates hydrological extremes, such as more-pronounced flooding and decreasing low flows. Overall, annual averages of water yield and surface runoff increase up to 61.6% and 67.8%, respectively, within the bias-corrected scenario simulations, compared to the historical simulations. However, changes in precipitation among the analyzed scenarios vary between −8.3% and +22.5% of the annual averages. Hydrological modeling results also show heterogeneous spatial patterns inside the catchment. These spatio-temporal patterns indicate the possibility of an aggravation for severe floods in wet seasons, as well as an increasing drought risk in dry seasons across the scenario simulations. Apart from that, the discharge peak, which is crucial for the flood recession agriculture in the floodplain, is likely to shift from April to May from the 2020s onwards

    Using seasonal rainfall clusters to explain the interannual variability of the rain belt over the Greater Horn of Africa

    Get PDF
    The seasonal cycle of rainfall over the Greater Horn of Africa (GHA) is dominated by the latitudinal migration and activity of the tropical rain belt (TRB). The TRB exhibits high interannual variability in the GHA and the reasons for the recent dry period in the Long Rains (March–May) are poorly understood. In addition, few studies have addressed the rainfall fluctuations during the Msimu Rains (Dec.–Mar.) in the southern GHA region. Interannual variations of the seasonal cycle of the TRB between 1981 and 2018 were analysed using two statistical indices. The Rainfall Cluster Index (RCI) describes the seasonal cycle as a succession of six characteristic rainfall patterns, while the Seasonal Location Index (SLI) captures the latitudinal location of the TRB. The SLI and RCI depict the full seasonal cycle of the TRB supporting interpretations of the interannual variations and trends. The Msimu Rains are dominated by two clusters with opposite rainfall characteristics between the Congo Basin and Tanzania. The associated anomalies in moisture flux and divergence indicate variations in the location of the TRB originating from an interplay between low‐level air flows from the Atlantic and Indian Oceans and tropical and subtropical teleconnections. The peak period of the Long Rains shows a complex composition of five clusters, which is tightly connected to intraseasonal and interannual variability of latitudinal locations of the TRB. A persistent location of the TRB near the equator, evidenced in a frequent occurrence of a cluster related to an anomalously weak Walker circulation, is associated with wet conditions over East Africa. Dry Long Rains are associated with strong and frequent latitudinal variations of the TRB position with a late onset and intermittent rainfall. These results offer new opportunities to understand recent variability and trends in the GHA region

    Hydrological Modeling in Data-Scarce Catchments: The Kilombero Floodplain in Tanzania

    Get PDF
    Deterioration of upland soils, demographic growth, and climate change all lead to an increased utilization of wetlands in East Africa. This considerable pressure on wetland resources results in trade-offs between those resources and their related ecosystem services. Furthermore, relationships between catchment attributes and available wetland water resources are one of the key drivers that might lead to wetland degradation. To investigate the impacts of these developments on catchment-wetland water resources, the Soil and Water Assessment Tool (SWAT) was applied to the Kilombero Catchment in Tanzania, which is like many other East African catchments, as it is characterized by overall data scarcity. Due to the lack of recent discharge data, the model was calibrated for the period from 1958–1965 (R2 = 0.86, NSE = 0.85, KGE = 0.93) and validated from 1966–1970 (R2 = 0.80, NSE = 0.80, KGE = 0.89) with the sequential uncertainty fitting algorithm (SUFI-2) on a daily resolution. Results show the dependency of the wetland on baseflow contribution from the enclosing catchment, especially in dry season. Main contributions with regard to overall water yield arise from the northern mountains and the southeastern highlands, which are characterized by steep slopes and a high share of forest and savanna vegetation, respectively. Simulations of land use change effects, generated with Landsat images from the 1970s up to 2014, show severe shifts in the water balance components on the subcatchment scale due to anthropogenic activities. Sustainable management of the investigated catchment should therefore account for the catchment–wetland interaction concerning water resources, with a special emphasis on groundwater fluxes to ensure future food production as well as the preservation of the wetland ecosyste

    Rainfall Variability and Trends over the Greater Horn of Africa

    Get PDF
    Am erweiterten Horn von Afrika (engl. “Greater Horn of Africa”, GHA) gibt es eine hohe Jahr-zu-Jahr VariabilitĂ€t der saisonalen NiederschlĂ€ge, die sich hĂ€ufig in DĂŒrre- und Überschwemmungsereignissen Ă€ußert. DarĂŒber hinaus können zukĂŒnftige VerĂ€nderungen der NiederschlĂ€ge ĂŒber dem GHA das Potenzial haben, negative sozioökonomische Entwicklungen zu begĂŒnstigen. Daher ist ein VerstĂ€ndnis der atmosphĂ€rischen und ozeanischen Wechselwirkungen, wie z.B. der gekoppelten Ozean-AtmosphĂ€ren-Modi im Indischen und Pazifischen Ozean, und ihres Einflußes auf die Muster der saisonalen NiederschlagsvariabilitĂ€t wesentlich fĂŒr die AbschĂ€tzung zukĂŒnftiger VerĂ€nderungen und die Festlegung geeigneter Anpassungsstrategien. Ziel dieser Arbeit ist es, einen Beitrag zur Beschreibung und zum VerstĂ€ndnis der saisonalen und interannuellen VariabilitĂ€t des Niederschlags ĂŒber dem GHA zu leisten. Das GHA befindet sich in den Ă€quatorialen Breitengraden, ist jedoch vom Rest des afrikanischen Kontinents durch zwei Bergmassive abgetrennt, welche das Wetter und Klima der Region erheblich beeinflussen. Die komplexe Topographie und einige der grĂ¶ĂŸten Seen der Welt tragen zu einer Vielzahl von lokalen Niederschlagsklimaten bei. Da die Berge den Einfluss westlicher Winde aus dem feuchten Kongobecken reduzieren, sind vor allem die östlichen TieflĂ€nder meist trocken mit zwei unterschiedlichen Regenzeiten im borealen FrĂŒhjahr und Herbst. Im Nordwesten und SĂŒden des GHA verschmelzen die beiden Regenzeiten zu einer, die ungefĂ€hr von Juni bis September bzw. Oktober bis April dauert. In den letzten Jahrzehnten wiesen die verschiedenen Regenzeiten unterschiedliche Trends auf. Vor allem die NiederschlĂ€ge in der borealen FrĂŒhjahrssaison, die historisch gesehen die wichtigste landwirtschaftliche Saison ist, sind seit Ende der 1990er Jahre abrupt zurĂŒckgegangen. Theorien, die versuchen, diesen RĂŒckgang zu erklĂ€ren, reichen von Wechselwirkungen mit regionalen Zirkulationsmustern, wie der verstĂ€rkten ErwĂ€rmung des nahe gelegenen Indischen Ozeans und der WĂŒsten, bis hin zu globalen Verschiebungen der tropischen Zirkulation, die in der dekadischen VariabilitĂ€t des Pazifischen Ozeans eingebettet sind. In der vorliegenden Arbeit wird versucht, die verschiedenen Faktoren der KlimavariabilitĂ€t des Niederschlags in den verschiedenen Regenzeiten zu entwirren und herauszufinden, wie sie die Wanderung des tropischen Regenbands (engl. “Tropical Rain Band”, TRB) verĂ€ndern. Der Ansatz konzentriert sich auf die Frage, ob die beobachteten negativen Niederschlagstrends durch eine allgemeine Verringerung der Feuchtigkeit oder durch VerĂ€nderungen in der Wanderung des TRB verursacht wurden. Im ersten Teil dieser Arbeit wird eine neuartige und flexible Definition der Regenzeiten vorgestellt, um die NiederschlagssaisonalitĂ€t, den Beginn, das Ende und die Dauer der Regenzeiten, sowie die dazugehörigen Unsicherheiten aus den Niederschlagszeitreihen zu ermitteln. Dieser Ansatz ermöglicht es, zusammenhĂ€ngende Teile der Region mit einer vergleichbaren SaisonalitĂ€t abzugrenzen und Trends der jeweiligen Regenzeiten zu quantifizieren. Die Definition wird auf das satellitengestĂŒtzte Produkt “Climate Hazards InfraRed Precipitation with Stations” (CHIRPS) und auf einen umfangreichen Satz bodengestĂŒtzter Messungen aus der “Karlsruhe African Surface Station Database” (KASS-D) angewandt. Die Ergebnisse zeigen eine starke Übereinstimmung mit der bekannten saisonalen Dynamik in der Region und den ĂŒblicherweise verwendeten kalendarischen Dreimonatsperioden. Im Vergleich zu den letztgenannten Einteilungen ergibt sich ein Mehrwert durch den neuartigen Ansatz, da er auch lokale Niederschlagsmerkmale erfasst und Auswertungen ĂŒber die Grenzen der NiederschlagssaisonalitĂ€t hinweg erleichtert. Die Trendanalyse zeigt einen Feuchtetrend im Zentralsudan und in West- und Nordost-Äthiopien fĂŒr die boreale Sommersaison sowie in Ost- und SĂŒdost-Äthiopien, Somalia und Nordkenia fĂŒr die boreale Herbstsaison. Ein Trocken- trend ist in Tansania und der Demokratischen Republik Kongo festzustellen. Beide Arten von Trends sind regional mit VerĂ€nderungen der Endzeitpunkte der Regenzeit verbunden. CHIRPS- und Stationstrends stimmen in den meisten FĂ€llen innerhalb des GHA ĂŒberein, unterscheiden sich jedoch in KĂŒsten- und topographisch komplexen Regionen, sowie Regionen mit einer instabilen NiederschlagssaisonalitĂ€t. Im zweiten Teil werden die interannuellen Variationen des saisonalen Zyklus des TRB unter Verwendung zweier statistischer Indizes analysiert. Der “Seasonal Location Index” (SLI) ist ein kontinuierlicher Index, der mit Hilfe einer Hauptkomponentenanalyse die saisonale Wanderung des TRB in Verbindung mit tĂ€glichen Niederschlagsmustern darstellt. Der “Rainfall Cluster Index” (RCI) ist ein diskreter Index, der den saisonalen Zyklus als eine Abfolge von sechs charakteristischen Niederschlagsmustern beschreibt, die durch eine Clusteranalyse definiert werden. In Kombination erfassen beide Indizes den vollstĂ€ndigen saisonalen Zyklus des TRB, was die Interpretation der zwischenjĂ€hrlichen Schwankungen und Trends unterstĂŒtzt. Zwei Regenzeiten, die “Msimu”-Regenzeit im Dezember–MĂ€rz und die “Long Rains” im MĂ€rz–Mai, werden im Detail analysiert, um charakteristische Zirkulationsmuster und potenzielle Korrelationen zu großrĂ€umigen Antriebsmechanismen zu identifizieren. Die Msimu-Regenzeit wird von zwei Mustern mit entgegengesetzten Niederschlagscharakteristiken zwischen dem Kongobecken und Tansania dominiert. Die damit verbundenen Zirkulationsanomalien im Feuchtefluss und in der Divergenz deuten auf Variationen in der Lage des TRB hin, die aus einem Wechselspiel zwischen unteren Luftströmungen aus dem Atlantischen und Indischen Ozean sowie tropischen und subtropischen Wechselwirkungen entstehen. Die Analyse fĂŒr den April, dem Monat mit den stĂ€rksten NiederschlĂ€gen der Long Rains, zeigt eine komplexe Zusammensetzung von fĂŒnf Niederschlagsmustern, die eng mit der intraseasonalen und interannuellen VariabilitĂ€t der Positionen des TRB, insbesondere entlang der Breitengrade, verbunden ist. Eine dauerhafte Lage des TRB in ÄquatornĂ€he, die sich in einer hohen Anzahl von Tagen in der NĂ€he des mehrjĂ€hrigen mittleren SLI-Wertes Ă€ußert, ist mit feuchten Bedingungen ĂŒber dem Ă€quatorialen Ostafrika verbunden. Diese Bedingungen gehen mit dem hĂ€ufigen Auftreten eines bestimmten Musters einher, welches mit einer erhöhten MeeresoberflĂ€chentemperatur in der Arabischen See und einer verminderten Walker-Zirkulation zusammenhĂ€ngt. Trockene Long Rains sind mit starken und hĂ€ufigen Schwankungen der TRB-Position entlang der Breitengrade assoziiert, die teilweise auf tropisch-extratropische Wechselwirkungen in beiden HemisphĂ€ren zurĂŒckzufĂŒhren sind. Die relativen VerhĂ€ltnisse der vorkommenden Muster deuten auf ein spĂ€tes Einsetzen und unterbrochene Regenperioden hin. Die Ergebnisse und Verbindungen zu den verschiedenen Antriebsmechanismen bieten neue Möglichkeiten, die VariabilitĂ€t und Trends der letzten Dekaden in der GHA-Region zu verstehen

    Impact of Climate Change on Water Resources in the Kilombero Catchment in Tanzania

    No full text
    This article illustrates the impact of potential future climate scenarios on water quantity in time and space for an East African floodplain catchment surrounded by mountainous areas. In East Africa, agricultural intensification is shifting from upland cultivation into the wetlands due to year-round water availability and fertile soils. These advantageous agricultural conditions might be hampered through climate change impacts. Additionally, water-related risks, like droughts and flooding events, are likely to increase. Hence, this study investigates future climate patterns and their impact on water resources in one production cluster in Tanzania. To account for these changes, a regional climate model ensemble of the Coordinated Regional Downscaling Experiment (CORDEX) Africa project was analyzed to investigate changes in climatic patterns until 2060, according to the RCP4.5 (representative concentration pathways) and RCP8.5 scenarios. The semi-distributed Soil and Water Assessment Tool (SWAT) was utilized to analyze the impacts on water resources according to all scenarios. Modeling results indicate increasing temperatures, especially in the hot dry season, intensifying the distinctive features of the dry and rainy season. This consequently aggravates hydrological extremes, such as more-pronounced flooding and decreasing low flows. Overall, annual averages of water yield and surface runoff increase up to 61.6% and 67.8%, respectively, within the bias-corrected scenario simulations, compared to the historical simulations. However, changes in precipitation among the analyzed scenarios vary between −8.3% and +22.5% of the annual averages. Hydrological modeling results also show heterogeneous spatial patterns inside the catchment. These spatio-temporal patterns indicate the possibility of an aggravation for severe floods in wet seasons, as well as an increasing drought risk in dry seasons across the scenario simulations. Apart from that, the discharge peak, which is crucial for the flood recession agriculture in the floodplain, is likely to shift from April to May from the 2020s onwards

    A new and flexible rainy season definition: Validation for the Greater Horn of Africa and application to rainfall trends

    No full text
    Previous studies on observed or projected rainfall trends for the Greater Horn of Africa (GHA) generally focus on calendric 3-month periods, and thus partly neglect the complexity of rainfall seasonality in this topographically heterogeneous region. This study introduces a novel and flexible methodology to identify the rainfall seasonality, the onset, cessation and duration of the rainy seasons and the associated uncertainties from rainfall time series. The definition is applied to the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) satellite product and an extensive rain gauge data set. A strong agreement with known seasonal dynamics in the region and the commonly used calendric rainy seasons is demonstrated. Compared to the latter definition, a clear added value is found for the new approach as it captures the local rainfall features (associated with, for example, the sea breeze), thus facilitating evaluations across rainfall seasonality borders. While previously known trends are qualitatively confirmed, trends are amplified in some regions using the flexible definition method. Notably, a drying trend in Tanzania and Democratic Republic of Congo and a wetting trend in central Sudan and parts of eastern Ethiopia and Kenya can be detected. The trends are regionally associated with changes in rainy season cessation. CHIRPS and station trend patterns are consistent over larger regions of the GHA, but differ in regions with known rainfall contributions from warmer cloud tops. Discrepancies are found in coastal and topographically complex areas, and regions with an unstable seasonality of rainfall. As expected, CHIRPS shows spatially more homogeneous trends compared to station data. The more precise definition of the rainy season facilitates the assessment of rainfall characteristics like intensity, rainfall amounts or temporal shifts of rainy seasons. This novel methodology could also provide a more adequate calibration of climate model simulations thus potentially enabling more realistic climate change projections for the GHA

    Hydrological Modeling in Data-Scarce Catchments: The Kilombero Floodplain in Tanzania

    Get PDF
    Deterioration of upland soils, demographic growth, and climate change all lead to an increased utilization of wetlands in East Africa. This considerable pressure on wetland resources results in trade-offs between those resources and their related ecosystem services. Furthermore, relationships between catchment attributes and available wetland water resources are one of the key drivers that might lead to wetland degradation. To investigate the impacts of these developments on catchment-wetland water resources, the Soil and Water Assessment Tool (SWAT) was applied to the Kilombero Catchment in Tanzania, which is like many other East African catchments, as it is characterized by overall data scarcity. Due to the lack of recent discharge data, the model was calibrated for the period from 1958-1965 (R-2 = 0.86, NSE = 0.85, KGE = 0.93) and validated from 1966-1970 (R-2 = 0.80, NSE = 0.80, KGE = 0.89) with the sequential uncertainty fitting algorithm (SUFI-2) on a daily resolution. Results show the dependency of the wetland on baseflow contribution from the enclosing catchment, especially in dry season. Main contributions with regard to overall water yield arise from the northern mountains and the southeastern highlands, which are characterized by steep slopes and a high share of forest and savanna vegetation, respectively. Simulations of land use change effects, generated with Landsat images from the 1970s up to 2014, show severe shifts in the water balance components on the subcatchment scale due to anthropogenic activities. Sustainable management of the investigated catchment should therefore account for the catchment-wetland interaction concerning water resources, with a special emphasis on groundwater fluxes to ensure future food production as well as the preservation of the wetland ecosystem
    corecore