40 research outputs found

    Proteomic response of pseudomonas putida KT2440 to dual carbon-phosphorus limitation during mcl-PHAs synthesis

    Get PDF
    Pseudomonas putida KT2440, one of the best characterized pseudomonads, is a metabolically versatile producer of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) that serves as a model bacterium for molecular studies. The synthesis of mcl-PHAs is of great interest due to their commercial potential. Carbon and phosphorus are the essential nutrients for growth and their limitation can trigger mcl-PHAs' production in microorganisms. However, the specific molecular mechanisms that drive this synthesis in Pseudomonas species under unfavorable growth conditions remain poorly understood. Therefore, the proteomic responses of Pseudomonas putida KT2440 to the limited carbon and phosphorus levels in the different growth phases during mcl-PHAs synthesis were investigated. The data indicated that biopolymers' production was associated with the cell growth of P. putida KT2440 under carbon- and phosphorus-limiting conditions. The protein expression pattern changed during mcl-PHAs synthesis and accumulation, and during the different physiological states of the microorganism. The data suggested that the majority of metabolic activities ceased under carbon and phosphorus limitation. The abundance of polyhydroxyalkanoate granule-associated protein (PhaF) involved in PHA synthesis increased significantly at 24 and 48 h of the cultivations. The activation of proteins belonging to the phosphate regulon was also detected. Moreover, these results indicated changes in the protein profiles related to amino acids metabolism, replication, transcription, translation, stress response mechanisms, transport or signal transduction. The presented data allowed the investigation of time-course proteome alterations in response to carbon and phosphorus limitation, and PHAs synthesis. This study provided information about proteins that can be potential targets in improving the efficiency of mcl-PHAs synthesis.publishe

    Microalgae as Contributors to Produce Biopolymers

    Get PDF
    Biopolymers are very favorable materials produced by living organisms, with interesting properties such as biodegradability, renewability, and biocompatibility. Biopolymers have been recently considered to compete with fossil-based polymeric materials, which rase several environmental concerns. Biobased plastics are receiving growing interest for many applications including electronics, medical devices, food packaging, and energy. Biopolymers can be produced from biological sources such as plants, animals, agricultural wastes, and microbes. Studies suggest that microalgae and cyanobacteria are two of the promising sources of polyhydroxyalkanoates (PHAs), cellulose, carbohydrates (particularly starch), and proteins, as the major components of microalgae (and of certain cyanobacteria) for producing bioplastics. This review aims to summarize the potential of microalgal PHAs, polysaccharides, and proteins for bioplastic production. The findings of this review give insight into current knowledge and future direction in microalgal-based bioplastic production considering a circular economy approach. The current review is divided into three main topics, namely (i) the analysis of the main types and properties of bioplastic monomers, blends, and composites; (ii) the cultivation process to optimize the microalgae growth and accumulation of important biobased compounds to produce bioplastics; and (iii) a critical analysis of the future perspectives on the field.publishe

    Second generation bioethanol production: on the use of pulp and paper industry wastes as feedstock

    Get PDF
    Due to the health and environment impacts of fossil fuels utilization, biofuels have been investigated as a potential alternative renewable source of energy. Bioethanol is currently the most produced biofuel, mainly of first generation, resulting in food-fuel competition. Second generation bioethanol is produced from lignocellulosic biomass, but a costly and difficult pretreatment is required. The pulp and paper industry has the biggest income of biomass for non-food-chain production, and, simultaneously generates a high amount of residues. According to the circular economy model, these residues, rich in monosaccharides, or even in polysaccharides besides lignin, can be utilized as a proper feedstock for second generation bioethanol production. Biorefineries can be integrated in the existing pulp and paper industrial plants by exploiting the high level of technology and also the infrastructures and logistics that are required to fractionate and handle woody biomass. This would contribute to the diversification of products and the increase of profitability of pulp and paper industry with additional environmental benefits. This work reviews the literature supporting the feasibility of producing ethanol from Kraft pulp, spent sulfite liquor, and pulp and paper sludge, presenting and discussing the practical attempt of biorefineries implementation in pulp and paper mills for bioethanol production.publishe

    Two-stage aeration fermentation strategy to improve bioethanol production by scheffersomyces stipitis

    Get PDF
    Hardwood spent sulfite liquor (HSSL) is a by-product from pulp industry with a high concentration of pentose sugars, besides some hexoses suitable for bioethanol production by Scheffersomyces stipitis. The establishment of optimal aeration process conditions that results in specific microaerophilic conditions required by S. stipitis is the main challenge for ethanol production. The present study aimed to improve the ethanol production from HSSL by S. stipitis through a two-stage aeration fermentation. Experiments with controlled dissolved oxygen tension (DOT) in the first stage and oxygen restriction in the second stage were carried out. The best results were obtained with DOT control at 50% in the first stage, where the increase of oxygen availability provided faster growth and higher biomass yield, and no oxygen supply with an agitation rate of 250 rpm, in the second stage allowed a successful induction of ethanol production. Fermentation using 60% of HSSL (v/v) as substrate for S. stipitis provided a maximum specific growth rate of 0.07 h−1 , an ethanol productivity of 0.04 g L h−1 and an ethanol yield of 0.39 g g−1 , respectively. This work showed a successful two-stage aeration strategy as a promising aeration alternative for bioethanol production from HSSL by S. stipitis.publishe

    Ethanol production from hydrolyzed kraft pulp by mono- and co-cultures of yeasts: the challenge of C6 and C5 sugars consumption

    Get PDF
    Second-generation bioethanol production’s main bottleneck is the need for a costly and technically di cult pretreatment due to the recalcitrance of lignocellulosic biomass (LCB). Chemical pulping can be considered as a LCB pretreatment since it removes lignin and targets hemicelluloses to some extent. Chemical pulps could be used to produce ethanol. The present study aimed to investigate the batch ethanol production from unbleached Kraft pulp of Eucalyptus globulus by separate hydrolysis and fermentation (SHF). Enzymatic hydrolysis of the pulp resulted in a glucose yield of 96.1 3.6% and a xylose yield of 94.0 7.1%. In an Erlenmeyer flask, fermentation of the hydrolysate using Saccharomyces cerevisiae showed better results than Sche ersomyces stipitis. At both the Erlenmeyer flask and bioreactor scale, co-cultures of S. cerevisiae and S. stipitis did not show significant improvements in the fermentation performance. The best result was provided by S. cerevisiae alone in a bioreactor, which fermented the Kraft pulp hydrolysate with an ethanol yield of 0.433 g g1 and a volumetric ethanol productivity of 0.733 g L1 h1, and a maximum ethanol concentration of 19.24 g L1 was attained. Bioethanol production using the SHF of unbleached Kraft pulp of E. globulus provides a high yield and productivity.publishe

    Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures

    Get PDF
    Background: This paper presents a metabolic model describing the production of polyhydroxyalkanoate (PHA) copolymers in mixed microbial cultures, using mixtures of acetic and propionic acid as carbon source material. Material and energetic balances were established on the basis of previously elucidated metabolic pathways. Equations were derived for the theoretical yields for cell growth and PHA production on mixtures of acetic and propionic acid as functions of the oxidative phosphorylation efficiency, P/O ratio. The oxidative phosphorylation efficiency was estimated from rate measurements, which in turn allowed the estimation of the theoretical yield coefficients. Results: The model was validated with experimental data collected in a sequencing batch reactor (SBR) operated under varying feeding conditions: feeding of acetic and propionic acid separately (control experiments), and the feeding of acetic and propionic acid simultaneously. Two different feast and famine culture enrichment strategies were studied: (i) either with acetate or (ii) with propionate as carbon source material. Metabolic flux analysis (MFA) was performed for the different feeding conditions and culture enrichment strategies. Flux balance analysis (FBA) was used to calculate optimal feeding scenarios for high quality PHA polymers production, where it was found that a suitable polymer would be obtained when acetate is fed in excess and the feeding rate of propionate is limited to ∼0.17 C-mol/ (C-mol.h). The results were compared with published pure culture metabolic studies. Conclusion: Acetate was more conducive toward the enrichment of a microbial culture with higher PHA storage fluxes and yields as compared to propionate. The P/O ratio was not only influenced by the selected microbial culture, but also by the carbon substrate fed to each culture, where higher P/O ratio values were consistently observed for acetate than propionate. MFA studies suggest that when mixtures of acetate and propionate are fed to the cultures, the catabolic activity is primarily guaranteed through acetate uptake, and the characteristic P/O ratio of acetate prevails over that of propionate. This study suggests that the PHA production process by mixed microbial cultures has the potential to be comparable or even more favourable than pure cultures.publishersversionpublishe

    Impact of a Pretreatment Step on the Acidogenic Fermentation of Spent Coffee Grounds

    Get PDF
    This work was developed within the scope of the project CICECO-Aveiro Institute of Materials (LA/P/0006/2020), Paulo C. Lemos acknowledges the support by FCT/MCTES for contract IF/01054/2014/CP1224/CT0005.Acidogenic fermentation (AF) is often applied to wastes to produce short-chain organic acids (SCOAs)—molecules with applications in many industries. Spent coffee grounds (SCGs) are a residue from the coffee industry that is rich in carbohydrates, having the potential to be valorized by this process. However, given the recalcitrant nature of this waste, the addition of a pretreatment step can significantly improve AF. In this work, several pretreatment strategies were applied to SCGs (acidic hydrolysis, basic hydrolysis, hydrothermal, microwave, ultrasounds, and supercritical CO2 extraction), evaluated in terms of sugar and inhibitors release, and used in AF. Despite the low yields of sugar extracted, almost all pretreatments increased SCOAs production. Milder extraction conditions also resulted in lower concentrations of inhibitory compounds and, consequently, in a higher concentration of SCOAs. The best results were obtained with acidic hydrolysis of 5%, leading to a production of 1.33 gSCOAs/L, an increase of 185% compared with untreated SCGs.publishersversionpublishe

    Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy

    Get PDF
    The pulp and paper industry is recognized as a well-established sector, which throughout its process, generates a vast amount of waste streams with the capacity to be valorized. Typically, these residues are burned for energy purposes, but their use as substrates for biological processes could be a more efficient and sustainable alternative. With this aim, it is essential to identify and characterize each type of waste to determine its biotechnological potential. In this context, this research highlights possible alternatives with lower environmental impact and higher revenues. The bio-based pathway should be a promising alternative for the valorization of pulp and paper industry wastes, in particular for bioproduct production such as bioethanol, polyhydroxyalkanoates (PHA), and biogas. This article focuses on state of the art regarding the identification and characterization of these wastes, their main applied deconstruction technologies and the valorization pathways reported for the production of the abovementioned bioproductspublishe
    corecore