5 research outputs found
Plant species and growing season weather influence the efficiency of selenium biofortification
Se deficiency is widespread in agricultural soils; hence, agronomic Se biofortification is an important strategy to overcome its deficiency in humans and animals. InFinland, fertilizers have been amended with inorganic Se for over 20years to reverse the negative effects of low Se content in feed and food. Plant species, climatic conditions, other nutrients and soil properties affect the efficiency of Se biofortification. The present twoyears' study compared the ability of oilseed rape, wheat and forage grasses to uptake fertilizer Se applied as sodium selenate in a sub-boreal environment. The effect of foliar N application on Se uptake was tested in thesecond year. Se concentration was determined in plant parts and in soil samples taken at the end of growth season in both years as well as from another plot where Se fertilizer had been used for 20years. Se fertilizer recovery in harvested wheat and oilseed rape was 1-16%, and in forage grasses was 52-64% in the first harvest and 15-19% in the second harvest. Foliar N application improved Se uptake only at the higher Se fertilizer level. The efficiency of biofortification depended on weather conditions, with forage grasses being the most reliable crop. Oilseed rape as a Se semi-accumulator had no advantage in Se biofortification in field conditions due to low translocation to seeds.Peer reviewe
Genetic variation in the flowering and yield formation of timothy (Phleum pratense L.) accessions after different photoperiod and vernalization treatments
Timothy is a perennial forage grass grown commonly in Boreal regions. This study explored the effect of vernalization and photoperiod (PP) on flowering and growth characteristics and how this related to changes in expression of three flowering related genes in accessions from different geographic origin. Large variation was found in accessions in their vernalization and PP responses. In southern accessions vernalization response or requirement was not observed, the heading date remained unchanged, and plants flowered without vernalization. On the contrary, northern types had obligatory requirement for vernalization and long PP, but the tiller elongation did not require vernalization at 16-h PP. Longer vernalization or PP treatments reduced the genotypical differences in flowering. Moreover, the vernalization saturation progressed stepwise from main tiller to lateral tillers, and this process was more synchronized in southern accessions. The expression of PpVRN1 was associated with vernalization while PpVRN3 accumulated at long PP. A crucial role for PpVRN3 in the transition to flowering was supported as in southern accession the transcript accumulated in non-vernalized plants after transfer to 16-h PP, and the apices transformed to generative stage. Differences in vernalization requirements were associated with variation in expression levels of PpVRN1 and PpVRN3, with higher expression levels in southern type. Most divergent transcript accumulation of PpMADS10 was found under different vernalization conditions. These differences between accessions can be translated into agronomic traits, such as the tiller composition of canopy, which affects the forage yield. The southern types, with minimal vernalization response, have fast re-growth ability and rapidly decreasing nutritive value, whereas northern types grow slowly and have better quality. This information can be utilized in breeding for new cultivars for longer growing seasons at high latitudes.Peer reviewe
Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata
Uterine leiomyomata (UL) are the most common tumours of the female genital tract and the primary cause of surgical removal of the uterus. Genetic factors contribute to UL susceptibility. To add understanding to the heritable genetic risk factors, we conduct a genome-wide association study (GWAS) of UL in up to 426,558 European women from FinnGen and a previous UL meta-GWAS. In addition to the 50 known UL loci, we identify 22 loci that have not been associated with UL in prior studies. UL-associated loci harbour genes enriched for development, growth, and cellular senescence. Of particular interest are the smooth muscle cell differentiation and proliferation-regulating genes functioning on the myocardin-cyclin dependent kinase inhibitor 1A pathway. Our results further suggest that genetic predisposition to increased fat-free mass may be causally related to higher UL risk, underscoring the involvement of altered muscle tissue biology in UL pathophysiology. Overall, our findings add to the understanding of the genetic pathways underlying UL, which may aid in developing novel therapeutics.Peer reviewe