4 research outputs found

    Cancer Incidence and Mortality in the Oldest Old: a Nationwide Study in Finland

    Get PDF
    The world's population is aging rapidly. This study reports the burden of cancer in the oldest old (≥85 years) in Finland in 1953-2017 and estimates age-specific cancer rates in the old population (65-99 years) in 1988-2017. The Finnish Cancer Registry provided data on all cancer diagnoses, cancer deaths and other deaths in cancer patients in Finland in 1953-2017. Between 1953-1957 and 2013-2017, the proportion of incident cancers in those aged ≥85 years increased from 1.5% to 9.6% (597 to 15,360 new cases), and in 2013-2017, more new cancers were diagnosed at age ≥85 years than age <50 years. Cancer incidence and excess mortality attributable to cancer peaked at age 85-94 years and declined subsequently, whereas cancer-specific mortality continued to increase or plateaued. Due to demographic changes, the number of new cancers in the oldest old has increased substantially in Finland, and currently, nearly one in 10 cancers are diagnosed in this age group. The increasing cancer burden in the oldest old poses a major challenge for healthcare and needs to be addressed in designing clinical research and reporting of cancer registries. In old populations with competing risks of death, we propose excess cancer mortality as a measure of cancer-related mortality.Peer reviewe

    Familial aggregation of early-onset cancers

    Get PDF
    This registry-linkage study evaluates familial aggregation of cancer among relatives of a population-based series of early-onset (Peer reviewe

    Worldwide trends in population-based survival for children, adolescents, and young adults diagnosed with leukaemia, by subtype, during 2000–14 (CONCORD-3) : analysis of individual data from 258 cancer registries in 61 countries

    Get PDF
    Background Leukaemias comprise a heterogenous group of haematological malignancies. In CONCORD-3, we analysed data for children (aged 0–14 years) and adults (aged 15–99 years) diagnosed with a haematological malignancy during 2000–14 in 61 countries. Here, we aimed to examine worldwide trends in survival from leukaemia, by age and morphology, in young patients (aged 0–24 years). Methods We analysed data from 258 population-based cancer registries in 61 countries participating in CONCORD-3 that submitted data on patients diagnosed with leukaemia. We grouped patients by age as children (0–14 years), adolescents (15–19 years), and young adults (20–24 years). We categorised leukaemia subtypes according to the International Classification of Childhood Cancer (ICCC-3), updated with International Classification of Diseases for Oncology, third edition (ICD-O-3) codes. We estimated 5-year net survival by age and morphology, with 95% CIs, using the non-parametric Pohar-Perme estimator. To control for background mortality, we used life tables by country or region, single year of age, single calendar year and sex, and, where possible, by race or ethnicity. All-age survival estimates were standardised to the marginal distribution of young people with leukaemia included in the analysis. Findings 164563 young people were included in this analysis: 121328 (73·7%) children, 22963 (14·0%) adolescents, and 20272 (12·3%) young adults. In 2010–14, the most common subtypes were lymphoid leukaemia (28205 [68·2%] patients) and acute myeloid leukaemia (7863 [19·0%] patients). Age-standardised 5-year net survival in children, adolescents, and young adults for all leukaemias combined during 2010–14 varied widely, ranging from 46% in Mexico to more than 85% in Canada, Cyprus, Belgium, Denmark, Finland, and Australia. Individuals with lymphoid leukaemia had better age-standardised survival (from 43% in Ecuador to ≥80% in parts of Europe, North America, Oceania, and Asia) than those with acute myeloid leukaemia (from 32% in Peru to ≥70% in most high-income countries in Europe, North America, and Oceania). Throughout 2000–14, survival from all leukaemias combined remained consistently higher for children than adolescents and young adults, and minimal improvement was seen for adolescents and young adults in most countries. Interpretation This study offers the first worldwide picture of population-based survival from leukaemia in children, adolescents, and young adults. Adolescents and young adults diagnosed with leukaemia continue to have lower survival than children. Trends in survival from leukaemia for adolescents and young adults are important indicators of the quality of cancer management in this age group.peer-reviewe

    Estimating multilevel regional variation in excess mortality of cancer patients using integrated nested Laplace approximation

    No full text
    Abstract Models of excess mortality with random effects were used to estimate regional variation in relative or net survival of cancer patients. Statistical inference for these models based on the Markov chain Monte Carlo (MCMC) methods is computationally intensive and, therefore, not feasible for routine analyses of cancer register data. This study assessed the performance of the integrated nested Laplace approximation (INLA) in monitoring regional variation in cancer survival. Poisson regression model of excess mortality including both spatially correlated and unstructured random effects was fitted to the data of patients diagnosed with ovarian and breast cancer in Finland during 1955–2014 with follow up from 1960 through 2014 by using the period approach with five‐year calendar time windows. We estimated standard deviations associated with variation (i) between hospital districts and (ii) between municipalities within hospital districts. Posterior estimates based on the INLA approach were compared to those based on the MCMC simulation. The estimates of the variation parameters were similar between the two approaches. Variation within hospital districts dominated in the total variation between municipalities. In 2000–2014, the proportion of the average variation within hospital districts was 68% (95% posterior interval: 35–93%) and 82% (60–98%) out of the total variation in ovarian and breast cancer, respectively. In the estimation of regional variation, the INLA approach was accurate, fast, and easy to implement by using the R‐INLA package
    corecore