13 research outputs found

    Phase transitions and antiferroelectricity in BiFeO3 from atomic-level simulations

    Get PDF
    The structural and polar properties of BiFeO3 at finite temperature are investigated using an atomistic shell model fitted to first-principles calculations. Molecular dynamics simulations show a direct transition from the lowerature R3c ferroelectric phase to the Pbnm orthorhombic phase without evidence of any intermediate bridging phase between them. The higherature phase is characterized by the presence of two sublattices with opposite polarizations, and it displays the characteristic double-hysteresis loop under the action of an external electric field. The microscopic analysis reveals that the change in the polar direction and the large lattice strains observed during the antiferroelectric-ferroelectric phase transition originate from the interplay between polarization, oxygen octahedron rotations, and strain. As a result, the induced ferroelectric phase recovers the symmetry of the lowerature R3c phase.Fil: Graf, Mónica Elisabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Sepliarsky, Marcelo Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Tinte, Silvia Noemi. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Stachiotti, Marcelo Gabriel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentin

    Rhombohedral R3c to orthorhombic Pnma phase transition induced by Y-doping in BiFeO3

    Get PDF
    In this work we study, by means of ab initio calculations, the structural, electronic and magnetic properties of Y-doped BiFeO3 compounds. We determine that there is a morphotropic phase boundary at an yttrium concentration of , where the structure changes from R3c to Pnma. This structural transition is driven by the chemical pressure induced by the dopant. By analyzing the evolution of the oxygen octahedral tilts we find an enhanced antiferrodistortive distortion when increasing the Y-doping, together with a reduction of the ferroelectric distorsion, that gives rise to a smaller value of the electric polarization. These cooperative effects should lead to a larger canting of the Fe magnetic moments and to a larger ferromagnetic response in the R3c phase, as it is observed in the experiments.Fil: Graf, Mónica Elisabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Di Napoli, Solange Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Barral, María Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Saleh Medina, Leila María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Negri, Ricardo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Sepliarsky, Marcelo Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Llois, Ana Maria. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Phase Diagram of a Strained Ferroelectric Nanowire

    Get PDF
    Ferroelectric materials manifest unique dielectric, ferroelastic, and piezoelectric properties. A targeted design of ferroelectrics at the nanoscale is not only of fundamental appeal but holds the highest potential for applications. Compared to two-dimensional nanostructures such as thin films and superlattices, one-dimensional ferroelectric nanowires are investigated to a much lesser extent. Here, we reveal a variety of the topological polarization states, particularly the vortex and helical chiral phases, in loaded ferroelectric nanowires, which enable us to complete the strain–temperature phase diagram of the one-dimensional ferroelectrics. These phases are of prime importance for optoelectronics and quantum communication technologie

    Atomic-level study of BiFe O3 under epitaxial strain

    Get PDF
    Structural and thermal properties of BiFeO3 under compressive epitaxial strain are investigated using a shell model fitted to first-principles calculations. We show that a model developed for the bulk describes properly the behavior of the compound as function of the strain, including the appearance of tetragonallike phase with a large c/a ratio. The obtained temperature-strain phase diagram reproduces several features observed experimentally in thin films. Molecular dynamic simulations show that morphotropic phase boundary separating the R-like and T-like regions is temperature independent but with different phases along the transition region. The microscopic analysis of the temperature-strain phase diagram emphasizes the relevance of the interplay between polarization, oxygen octahedron rotations, and strain.Fil: Graf, Mónica Elisabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Sepliarsky, Marcelo Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Stachiotti, Marcelo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentin

    Dynamical behavior of the phase transition of epitaxial BaTiO_3 from atomistic simulations

    No full text
    Using an atomistic shell model we study the temperature dependence of the ferroelectric properties of BaTiO3 under biaxial compressive strain applicable to growth on perovskites substrate. Molecular dynamics simulations show a r -> c -> p sequence of phase transitions when temperature is increased, and the absence of an ac phase. The frst-order paraelectric-to-ferroelectric phase transition presents in bulk changes to a second-order one as a consequence of the in-plane constraintimposed by the mechanical boundary conditions. From the tetragonal ferroelectric c phase, the transition takes place in a fnite range of temperature where the lattice parameter normal to the plane keeps approximately constant until Tc is reached. Analysis of the local polarization behavior reveals an order-disorder dynamics as the dominant mechanism of the transition.Fil: Sepliarsky, Marcelo Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Tinte, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin

    Topology of the polarization field in PbTiO3 nanoparticles of different shapes by atomic-level simulations

    Get PDF
    An atomistic model approach parameterized from first-principles calculations is used to investigate size and shape effects on the polarization field in isolated stress-free PbTiO3 nanoparticles. The study was carried out by molecular dynamics simulations in free-standing nanodots of cylindrical, spherical, and ellipsoidal shapes. We show that in cylinders with diameter equal to height, the size-induced transformation from the vortex to the flux-closure domain configuration causes an anomaly in the behavior of the toroidal moment and the volume of the system. During this transformation, the vortex core evolves into domain walls while the resulting structure is stabilized due to the non-homogeneous distribution of polarization and strain inside the domains. A similar behavior is observed in elongated cylinders, spheres, and spheroids. The increment in the diameter/height relation of the nanoparticles gives rise to a succession of topological transformations that include multi-vortex configurations, ferroelectric bubble states, and multi-domain patterns. While the transformation path for flat cylinders is similar to the one previously obtained for cuboids, the thinner edge region of the spheroids prevents the stabilization of one- and two-bubble states. Despite this last difference, our results indicate that the polarization pattern of a nanoparticle depends more on its aspect ratio than on its shape.Fil: Di Rino, Franco Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Sepliarsky, Marcelo Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Stachiotti, Marcelo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentin

    Development of an Atomic Level Model for BiFeO3 from First-Principles

    Get PDF
    We develop a first-principles atomistic shell model for BiFeO3 to study its ferroelectric and structural properties at finite temperature. The parameters of the potential are adjusted to reproduce first-principles results in different relevant configurations. Molecular dynamics simulations show that the resulting model is able to describe the ground-state ferroelectric R3c structure which remains stable as the temperature increases. At about 1100 K, system displays a first-order phase transition to the paraelectric Pbnm phase. Our results indicate that the developed model captures the delicate structural behavior shown by the ab-initio calculations and is able to reproduce the temperature behavior observed in experiments.Fil: Graf, Mónica Elisabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Sepliarsky, Marcelo Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Stachiotti, Marcelo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Tinte, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentin

    Dielectric and piezoelectric properties of BiFeO3 from molecular dynamics simulations

    Get PDF
    A first-principles based atomistic scheme is used to investigate the dielectric and piezoelectric properties of BiFeO3. The atomistic model fitted from first-principles calculations reproduces very well the structural and polar properties of the material at finite temperature, predicting a direct transition from a lowerature R3c ferroelectric phase to a Pbnm orthorhombic phase in agreement with experiments. We use this theoretical approach to calculate intrinsic single crystal properties, which are difficult to obtain from experiments due to decomposition and leakage problems. The whole set of dielectric and piezoelectric coefficients for BiFeO3 is computed as a function of temperature, together with the orientation dependence of the longitudinal coefficient d33∗.Fil: Graf, Mónica Elisabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Sepliarsky, Marcelo Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Machado, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Stachiotti, Marcelo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentin

    Site occupancy effects of Mg impurities in BaTiO3

    No full text
    A first-principles based atomistic model is developed to investigate intrinsic effects of Mg incorporation into A- and B-sites of BaTiO3. We find that the replacement of Ba by Mg at A-site positions generates local electric dipoles due to Mg off-centering along [001] directions, which increase the Curie temperature and decrease the cell volume. The inverse dependence is observed for B-site doped compositions, where the defect dipoles decrease the Curie temperature and expand the volume. Temperature-composition phase diagrams are constructed for both site locations and the effect of the two types of defects on the switching process is investigated. The theoretical predictions are used to shed light on experimental results of Mg-doped ceramics manufactured to induce a given occupation site. The comparison indicates that the incorporation of Mg into the B-site is thermodynamically favorable whereas the properties observed for the A-site ceramics cannot be explained from the intrinsic effects described by the model.Fil: Machado, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Di Loreto, Ariel Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Sepliarsky, Marcelo Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Frattini, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Stachiotti, Marcelo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentin
    corecore