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Abstract: Ferroelectric materials manifest unique dielectric, ferroelastic, and piezoelectric properties.
A targeted design of ferroelectrics at the nanoscale is not only of fundamental appeal but holds the
highest potential for applications. Compared to two-dimensional nanostructures such as thin films
and superlattices, one-dimensional ferroelectric nanowires are investigated to a much lesser extent.
Here, we reveal a variety of the topological polarization states, particularly the vortex and helical
chiral phases, in loaded ferroelectric nanowires, which enable us to complete the strain–temperature
phase diagram of the one-dimensional ferroelectrics. These phases are of prime importance for
optoelectronics and quantum communication technologies.

Keywords: ferroelectrics; nanowires; chirality; topological excitation

1. Introduction

Ferroelectrics are being turned into a leading material in modern electronics [1,2]
owing to their exceedingly broad range of applications enabling innovative devices, such as
memory and logical units, tunnel junctions, field-effect transistors, non-volatile ferroelec-
tric random access memory, nano-electromechanical systems, energy-harvesting devices,
advanced sensors and photocatalysis systems. A remarkable feature of ferroelectrics is
that, in the course of the occurring dimensional downscaling of devices, they not only
enable the superdensely packed circuits but also come up with new functionalities related
to the emergence of topological polarization states and specific surface-induced electro-
dynamics [3–5]. The two-dimensional and quasi-two-dimensional ferroelectric thin films
and superlattices harboring a variety of topological excitations such as soft domains [6],
vortices [7], skyrmions [8], and merons [9] are now understood reasonably well. At the
same time, cognizance surrounding the properties of topological excitations in their lower-
dimensional relatives, zero-dimensional nanodots, is much less extensive, although similar
excitations—vortices [10–14], skyrmions [15,16], and hopfions [17]—have been predicted.
Furthermore, while the fabrication methods of one-dimensional nanorods, nanotubes, and
nanowires have achieved considerable progress [18–23], the topological dynamics in these
one-dimensional nanostructures remain even more puzzling.

The past progress in this study of ferroelectric one-dimensional nanostructures has
been mostly dealing with general issues of the thermodynamic properties of the uniform
polarization states [24–27]. The importance of “new physics” related to the emergence
of unconventional topological vortex states was also realized [28], but only a few studies
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considered the systematics of their appearance [29–31]. In particular, the important practical
aspects of operations with the different topological states remain underexplored.

Here, we investigated the emergent topological phase states in a strained ferroelectric
nanowire arising due to the electrostatic confinement of polarization and demonstrate
the ways of manipulating and switching these states by the load applied to the ends of
the nanowire.

Here, we advance the existing Ginzburg–Landau–Devonshire (GLD) approach, via
creating a synergistic technique harnessing the analytical treatment, the phase-field numer-
ical calculations, and the atomistic simulations. A simultaneous use of these components
not only enables new revelations but, most importantly, brings in strong reliability to de-
rived results. These results show how new topological phases form in a confined strained
nanoscale wire. We consider a nanowire made of PbTiO3 (PTO), taking the latter as an
exemplary ferroelectric material. We construct the strain–temperature phase diagram of the
system and reveal the three qualitatively different polar phases: the vortex state (v phase)
with polarization swirling around the nanowire c axis; the helical state (h phase), with
the polarization screwing along the c axis; and the uniform polarization state extending
along the c axis (c phase). Each state has unique physical properties for applications. In
particular, the h phase hosts the spontaneously broken polarization chirality, easily tunable
by the applied strain and temperature. This property of tunable chirality is of prime im-
portance for optoelectronics and quantum communication technologies and does not have
natural analogs.

2. Materials and Methods
2.1. Functional

A general approach to the description of ferroelectrics is based on the Ginzburg–
Landau–Devonshire (GLD) functional, F =

∫
FdV, which in the case of a free-standing

sample is the Gibbs thermodynamic potential of the system. The corresponding free-energy
density, F(Pi,σij, ∂i ϕ), harnesses the ferroelectric, elastic, and electrostatic components,
written in terms of the polarization vector, Pi, stress tensor, σij, and electric field Ei = −∂i ϕ
(where ϕ is an electrostatic potential), respectively. For the pseudo-cubic perovskite crystal,
free energy density takes the form [32]:

F =
[

ai(T)P2
i + aσij P2

i P2
j + aijkP2

i P2
j P2

k

]
i≤j≤k

+
1
2

Gijkl(∂iPj)(∂kPl)

−QijklσijPkPl −
1
2

sijklσijσkl + (∂i ϕ)Pi −
1
2

ε0εb(∇ϕ)2. (1)

where the first brackets correspond to the uniform polarization energy [32], written in a
form as in [33]; the next term accounts for the energy, related to the polarization gradi-
ent [34]; the stress-polarization coupling is described by the third term [32]; the fourth term
represents the elastic energy contribution; and the coupling of polarization with the electric
field and the electrostatic energy are given by the last two terms [35]. Indices i, j, k, l take the
values 1, 2, 3 (or x, y, z), and the summation over repeated indices is assumed. For PTO with
pseudo-cubic symmetry, the coefficients in free energy density (1) take standard values [36]
(with cubic symmetry permutations) a1 = A (T − T0) with A = 3.8× 105 C−2m2 N K−1,
T0 = 479 ◦C (Curie temperature), aσ11 = −0.73× 108 C−4m6 N, aσ12 = 7.5× 108 C−4m6 N,
a111 = 2.6× 108 C−6m10 N, a112 = 6.1× 108 C−6m10 N, and a123 = −37× 108 C−6 m10 N.
The components of the stress-polarization coupling tensor, Qijkl, are Q1111 = 0.089 C−2m4,
Q1122 = −0.026 C−2m4, and Q1212 = 0.03375 C−2m4. The components of the elastic
compliance tensor, s1111 = 8 × 10−12 m−2 N−1, s1122 = −2.5 × 10−12 m−2 N−1, and
s1212 = 9× 10−12 m−2 N−1 are calculated as the inverse of the elastic tensor, sijkl = c−1

ijkl .

The gradient energy coefficients are G1111 = 2.77 × 10−10 C−2m4 N, G1122 = 0, and
G1212 = 1.38 × 10−10 C−2m4 N [34]. The constant ε0 is the vacuum permittivity, and
εb ' 10 [37] is the background dielectric constant due to nonpolar ions.
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The free energy density defined by Equation (1) written in terms of elastic stresses is
ordinarily used for the description of the bulk free-standing systems. When discussing
nanosystems confined in certain directions, it becomes more suitable to use the displace-
ments corresponding to the confined degrees of freedom as driving parameters rather than
stress variables. To that end, we go over to the strains, as to variables conjugated to the
stresses, uij = −∂F(Pi,σij, ∂i ϕ)/∂σij, and perform the Legendre transformation to replace
part of the stresses by corresponding strains. As a result, we arrive at the mixed description
in terms of both stress and strain variables, the choice depending on the particular geometry
of the system and the property to be described.

2.2. Phase-Field Simulations

Phase-field simulations of the PTO nanowires are performed with the help of the
FEniCS software package [38]. The evolution of the polarization vector field Pi to its
equilibrium fashion is governed by the relaxation equation:

− γ
∂Pi
∂t

=
δ

δPi

∫
F(Pi, uij, ∂i ϕ)dV. (2)

where the energy density is taken as a function of electric potential ϕ and the strain tensor
uij, obtained from the stress-dependent energy given by Equation (1) by the Legendre
transformation [39]. Equation (2) is closed by the Poisson equation which takes into
account electrostatic effects:

ε0εi∇2 ϕ = ∂iPi , (3)

and by the linear equation of elasticity:

s−1
ijkl∂j

(
ukl −QijklPkPl

)
= 0. (4)

The value of the parameter γ is taken equal to one, as it is not crucial for the static case.
The approximation of the time derivative on the left hand side of Equation (2) is accom-
plished by BDF2 variable-time stepper [40]. The system of nonlinear partial differential
equations given by Equation (2) is solved by Newton’s method. Linear Equations (3) and (4)
are solved using the iterative generalized minimum residual method (GMRES) [41,42]. The
computational space is represented by the cylindrical volume, partitioned into tetrahedrons
by the 3D mesh generator gmsh [43]. All variables Pi, ϕ, and uij are periodically constrained
in the z direction in addition to the assumed quasi-periodicity of the displacement along
the cylinder axis, uz|z=0 = uz|z=l + hu0. Here, h is the cylinder height and u0 is the applied
strain. The procedure of calculation of the phase diagram is as follows. Let each point
(T,u0) of the system be initially at the paraelectric phase with a random distribution of Pi
with |Pi| = 10−6 C/m2 components. Other initial states are the c phase with uniformly
oriented polarization along the cylinder axis and the vortex v phase in which polarization
rotates circularly around the cylinder axis. Then, let the system evolve with time and then
choose for each point the state with the minimum energy defined by Equation (1).

2.3. Atomistic Simulations

Complementing the phenomenological approach, atomic-level descriptions are useful
to model the microscopic behavior of ferroelectrics. Models based on interatomic potentials
are computationally efficient for the simulation of finite-temperature properties in systems
with a large number of atoms. In particular, a shell model approach with parameters fitted
to first-principle results has been extensively used to study ferroelectric oxides [44–46]. In
the shell model, atoms are thought to consist of an ion core coupled to an “electronic” shell
in order to include its electronic polarization. The core and shell of an atom interact with
each other as well as with the cores and shells of other ions via electrostatic interactions.
The description also includes short-range interactions which are normally restricted to act
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between shells only [47]. The potential energy, V, is then a function of the positions of cores
and shell, and is expressed as

V = VCS + VLR + VSR, (5)

where VCS represents the contribution of the interatomic core–shell coupling, VLR contains
the long-range electrostatic interactions among cores and shells of different atoms, and VSR
accounts for the contributions of short-range interactions between shells. For the PTO model
used here, cores and shells interact through an anharmonic spring V(w) = 1

2 k2w2 + 1
2 k4w4,

where w is the core–shell separation within an ion. Two different types of short-range
potentials are considered: a Rydberg potential, V(r) = (a + br) exp(−r/ρ) is used for
the Pb–Ti, Pb–O and Ti–O pairs, and a Buckingham potential, V(r) = a exp(−r/ρ) + c/r6,
is used for O–O interactions. Coefficients k2, k4, a, b, c and ρ are the shell model fitting
parameters. The multi-scale model with 23 independent parameters was originally devel-
oped to study bulk properties of PTO [48], and it was then successfully used to describe
the behavior of surfaces, interfaces, and nanoparticles without including any additional
coefficients [11,49,50].

The PTO wires are constructed from elementary perovskite unit-cells centered on Ti
atoms with axes along pseudocubic directions (x, y and z axes lie along the [100], [010], and
[001] directions, respectively). In addition, we consider that all surface faces consist of PbO
planes. Molecular dynamics simulations with the atomistic model are carried out using the
DL-POLY package [51] in a box with periodic boundary conditions. The nanowires extend
along the z axis and they are surrounded by enough empty space to avoid any possible
interaction between periodic replicas. Runs are performed by employing a constant volume
and temperature (NVT) algorithm. The time step is set to 0.2 fs, which provides enough
accuracy for the integration of the shell coordinates. The runs are made at temperature
intervals of 50 ◦C. Each MD run consists of at least 100,000 time steps for data collection
after 50,000 time steps for thermalization.

In contrast to the GLD functional, the atomistic description does not contain polariza-
tion as an explicit variable, and its value needs to be estimated from the positions of cores
and shells. The local polarization is defined as the dipole moment per unit volume of a
perovskite cell centered at the Ti atom, p = 1

v ∑i zi/wi(ri − rTi), where v is the volume of
the cell, zi and ri denote the charge and the position of the i-th particle, respectively, and wi
is a weight factor equal to the number of cells to which the particle belongs.

3. Results

As an exemplary system, we employed the ferroelectric nanowire of the radius
R = 4.8 nm and observed topologically different polarization textures for different strains
and temperatures. Figure 1 summarizes the observed results as a u0-T phase diagram that
exhibits the domains of existence of every discovered phase. The driving strain, u0 = uzz,
is calculated as the elongation of the lattice parameter of the nanowire c with respect to
the relaxed bulk value c0 as u0 = c/c0 − 1. The pairs of the cross-cut cylinders around the
diagram exhibit the polarization structure in the observed phases. The left cylinder of each
pair displays the polarization texture obtained from the phase field simulations visualized
as the vector field, while the right cylinders show the results of the atomistic simulations
visualized as polarization field lines. The red and blue lines in the phase diagram show the
phase boundaries found from the phase-field and atomistic simulations, respectively. The
high-temperature paraelectric phase is marked as the p phase in the phase diagram.

The vortex v phase arising at large compressing strains, harbors the closed field lines
turning around the nanowire axis and lying in the plane perpendicular to this axis. The
uniform c phase, arising at large tensile strains is the homogeneous phase when polarization
is directed along the nanowire axis. Finally, the helical h phase is a new phase revealed
by the phase-field simulations and arising when polarization exercises screw rotation
around the nanowire axis. This phase exists at small strains and mediates the continuous
transformation from a to c phases by changing the incline of the polarization vector with
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respect to the nanowire axis. The total view of the nanowire with the h phase is shown in
Figure 1 on the left. In atomistic simulations, the h phase looks less regular, exhibiting a
sort of propensity to history-dependent chaotic behavior. This may result from the surface
or bulk-lattice pinning of polarization leading to the formation of the extra variety of the
metastable states. Notably, as follows from the phase-field simulations, the second-order
v–h and h–c transition lines join at high-temperatures, to form the line of the direct v–c first-
order transition along the short segment hitting the critical temperature line. Unfortunately,
the precision of the atomistic simulation remains insufficient to test the thermodynamics in
the region of the contact of the v, h, and c phases close to the critical temperature.
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Figure 1. Emergent phases of strained ferroelectric nanowires. In the center of the figure is the
strain–temperature phase diagram comprising the results of the simulations. The red lines are the
guides-for-the-eye which connect the data-points and depict the phase transition lines separating
distinct ferroelectric phases obtained by phase-field simulations: the vortex phase (v), helical phase
(h), uniform phase (c), as well as the paraelectric phase (p). The blue lines show interfaces between the
same phases obtained by atomistic simulations. The structures of the observed phases are exemplified
by drawings around the phase diagram showing the cross-sectional cylinders of the nanowire. The left
picture of each panel represents the polarization vector field obtained from phase-field simulations
and the right picture shows the polarization field lines obtained from the atomistic simulations,
respectively; the cells in the atomic simulations results sketch the atomic lattices. The teal, fuchsia,
and terracotta represent the up, down, and xy plane directions of the polarization vector, respectively.
The exemplary values of the parameters used in simulations are indicated at the tops of the panels.
The total view of the nanowire hosting the h phase is shown on the left. The bottom-right corner
demonstrates the ways of identification of the phases from the characteristic features of the plot of
the averages P̄z = 〈P2

z 〉1/2, and P̄⊥ = 〈P2
x + P2

y 〉1/2 as functions of the strain u0. Again, the red lines
depict the results of the phase field simulations at T = 25 ◦C, and the blue lines stand for atomistic
simulations at T = −70 ◦C, respectively.

The low-right panel in Figure 1 demonstrates the practical way of the phase identifi-
cation by plotting the average polarizations along and perpendicular the nanowire axis,
P̄z = 〈P2

z 〉1/2, and P̄⊥ = 〈P2
x + P2

y 〉1/2 as function of u0 at given T. The regions where
P̄z = 0, P̄⊥ 6= 0, P̄z 6= 0, P̄⊥ 6= 0 and P̄z 6= 0, P̄⊥ = 0 correspond to the v, h, and c phase,
respectively. This method gives satisfactory precision for the phase-field simulations (red
curves) but is of more qualitative character in case the atomistic simulation (blue curves).

As follows from Figure 1, the phase diagram obtained from the atomistic simulation
is shifted with respect to the phase-field phase diagram to lower temperatures, and the
corresponding characteristic values of polarization are smaller. The transition temperatures
and polarization produced by the atomistic simulations are indeed underestimated with
respect to those resulting from the phase-field simulations (and experimental results). This
discrepancy is a consequence of the smaller equilibrium volume of the model and is related
to the LDA database used to fit model parameters. It is well known that the volume and
volume-dependent properties are underestimated when using the LDA approximation for
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the exchange-correlation functional in first-principle calculations which, in turn, lead to the
significant underestimation of the polarization and transition temperatures. In bulk, for
instance, the model gives a tetragonal ground state with the lattice parameter a = 3.859 Å, a
tetragonal distortion c/a = 1.043, and the spontaneous polarization P = 0.54 C m−2, while
the experimental data are a = 3.90 Å, c/a = 1.065, and P = 0.75 C m−2, respectively. The
underestimation of the static structural properties is translated via the adjusted model to the
finite temperature behavior. Molecular dynamics simulations showed the cubic–tetragonal
transition at Tc = 180 ◦C, which is of approximately 300 ◦C lower than the experimen-
tal value. Nevertheless, the qualitative temperature behavior of lattice parameters and
polarization is correctly reproduced [48].

4. Discussion

Now we are in a position to incorporate our results into a general context of the
existing research addressing the emergence of new polarization phases, homogeneous
and inhomogeneous ones, in nanostructured ferroelectrics. A glorious avenue of explor-
ing the properties of 2D and quasi-2D nanoscale ferroelectric heterostructures was paved
by the seminal work of Pertsev, Zembilgotov, and Tagantsev [52], who constructed the
phenomenological thermodynamic theory of strained ferroelectric films with uniform po-
larization and derived the strain–temperature phase diagram of the system. The applied
mechanical in-plane strains were considered as the constraints for the partial Legendre
transformations. Although the approach of [52] suffered from oversimplifications due to
neglecting the depolarization effects and instabilities related to the emergence of ferroelec-
tric and ferroelastic domains, it provided a gold standard for the initial approach to the
consideration of the numerous nonuniform states discovered in ferroelectric 2D structures:
complex networks of interplay of domains with 90◦ and 180◦ domain walls [53], periodic
arrays of stripe soft polarization domains [35], having the texture of oppositely rotating
vortices [7], or the double-periodic structure of cylindrical domains [54], having the textures
of bubble skyrmions [8].

Here, we adapt the approach of [52] to 1D systems to gain, first of all, a general insight
into the appearance of topological states in ferroelectric nanowires. We assume that the
load applied to the ends of the nanowire results in the fixed strain uzz = u0 along the
nanowire (so that u0 > 0 for stretching, and u0 < 0 for compression). We further assume
the absence of the off-diagonal strains, which implies uxz = uyz = uxy = 0. At the same
time, the nanowire is supposed to be free to expand in the transversal x and y directions,
while still being subject to the surface-applied pressure, p. This external pressure originates
from either contact with the embedding material or from the Laplace pressure, p = µ/R,
induced by the surface tension µ in the case of the cylinder sample [24,25]. Both cases result
in the uniform in-plane compression stress σxx = σyy = −p.

The application of the partial Legendre transformations with the described constraints
gives the effective free energy density F̃ as Equation (6), that is similar to the thermody-
namic potential obtained in [52] but with the differently renormalized coefficients denoted
by asterisks:

F̃ = a∗1
(

P2
1 + P2

2

)
+ a∗3 P2

3 + a∗11

(
P4

1 + P4
2

)
+ a∗33P4

3 + a∗13

(
P2

1 P2
3 + P2

2 P2
3

)
+ a∗12P2

1 P2
2

+ a111

(
P6

1 + P6
2 + P6

3

)
+ a112[P4

1

(
P2

2 + P2
3

)
+ P4

2

(
P2

1 + P2
3

)
+ P4

3 (P2
1 + P2

2 )] + a123P2
1 P2

2 P2
3 . (6)

The analytical expressions for the renormalized coefficients and their numerical values
for PTO are given in Table 1.

Figure 2a presents the strain–temperature phase diagram (depicted by black lines) of
the strained nanowires obtained as a result of minimization of the effective free energy
density (6). The phase diagram contains an a phase with the transversal to the wire
polarization, P = (P, 0, 0) (or equivalently the b phase with P = (0, P, 0)) and the c phase
in parallel to the wire polarization, P = (0, 0, P); we assume here that the external pressure
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is absent, p = 0. Naturally, on the phase diagram, the negative (compressive) strain favors
the a phase whereas the positive (tensile) strain favors the c phase.

Table 1. Analytical expressions and numerical values (for PTO) of coefficients in free energy density F̃.

Coefficient Analytical Numerical, PTO Units

a1 3.8 (T − 479 ◦C) × 105 C−2 m2 N−1

a∗1 , a∗2 a1 − Q12
s11

u0 +
(

Q11 + Q12 − 2s12
s11

Q12

)
p a1+ 3.25 × 109 u0+ 0.047 p C−2 m2 N−1

a∗3 a1 − Q11
s11

u0 +
(

2Q12 − 2s12
s11

Q11

)
p a1− 11 × 109 u0+ 0.004 p C−2 m2 N−1

a∗11, a∗22 aσ11 +
Q2

12
2s11

−0.03 × 109 C−4 m6 N

a∗33 aσ11 +
Q2

11
2s11

0.42 × 109 C−4 m6 N

a∗13, a∗23 aσ12 +
Q11Q12

s11
+

Q2
44

2s44
0.71 × 109 C−4 m6 N

a∗12 aσ12 +
Q2

12
s11

0.83 × 109 C−4 m6 N
a111, a222, a333 0.26 × 109 C−6 m10 N
a112, a113, a223 0.61 × 109 C−6 m10 N

a123 −3.7 × 109 C−6 m10 N
We use notations Q11 = Q1111, Q12 = Q1122, and Q44 = 4Q1212 as in [52,55].
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Figure 2. Phases of the strained nanowire. (a) Calculated thermodynamic phase diagram of the
uniform phases in the nanowire. The phase boundaries between the paraelectric p phase and
uniformly polarized ferroelectric a phase and c phase when the depolarization effects of the surface
bound charges that are neglected are shown in black. The thick lines correspond to the discontinuous
first-order transitions and the thin line to the continuous second-order transition. The phase diagram,
obtained from the phase-field simulations, that replicates the diagram shown in Figure 1 is shown by
red lines. The dashed red lines are the guides-for-the-eye connecting the data-points. The solid red
lines correspond to the analytical results for critical temperatures, Tca and Tcc, fitting the data points;
(b) chirality density of the nanowire as function of temperature at given strain; and (c) chirality
density of the nanowire as a function of the strain at a given temperature. The plots shown in (b,c)
panels demonstrate a distinction between the chiral h phase and other non-chiral ferroelectric phases,
the uniform c phase and vortex v phase.

Similar to the strained film [52], the behavior of the transition temperature of the ferro-
electric nanowire, Tc(u0, p) is depicted by the curve combining Tca and Tcc dependencies
on the applied strain, Tc(u0, p) = max [Tca(u0, p), Tcc(u0, p)], having a cusp at u0 = 0 (at
p = 0), see Figure 2a. Here, Tca and Tcc are the Curie temperatures of the a and c phases,
respectively; their dependence on u0 and p, provided by conditions a∗1 = 0 and a∗3 = 0,
is given in Table 2. The specific feature of the ferroelectric phase transition to the a phase
is that it is the transition of the weak first order, because the fourth-order coefficients a∗11,
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a∗22 are negative but very small in magnitude. We neglect the small discontinuity of this
transition here. In the nonlinear region, below Tc, the a phase occupies the substantial part
of the diagram, including the clamped nanowire region with u0 = 0. The c phase appears
mostly at the large tensile strains and at high temperatures. The transition between the a
and c phases occurs in a discontinuous way.

Table 2. Critical temperatures (◦C).

Tc Analytical Numerical, PTO

Tca
T0 +

1
A

Q12
s11

u0 −
1
A

(
Q11 + Q12 − 2s12

s11
Q12

)
p

479− 8.6× 103 u0 − 1.2× 10−7 p

Tcc T0 +
1
A

Q11
s11

u0 − 1
A

(
2Q12 − 2s12

s11
Q11

)
p 479 + 2.9× 104 u0 − 9.5× 10−9 p

All parameters are expressed in SI units.

The preceding consideration, however, gives only a general structure of the phase
diagram since it does not account for the electrostatic energy of the depolarization field
induced by the surface bound charges arising at the surface points of polarization termina-
tion. Accordingly, the aforementioned phase diagram of the uniform ferroelectric phases
is valid in the absence of depolarization effects, for instance, when the nanowire is sub-
merged in the conducting media and the free conducting carriers screen the depolarization
charges. Accounting for the electrostatic effects in the absence of screening modifies the
emergent phases, making them nonuniform. The breakdown of the uniformity is caused
by the necessity to reduce the value of the depolarization energy, ideally to zero, hence to
avoid appearance of bound charges inducing the depolarization fields. Mathematically,
this requirement implies that the system always prefers polarization textures with diver-
genceless polarization lines tangent to the lateral nanowire surface. The observed vortex v
phase is one of such realized possibilities. The comparison of the uniform phase diagram
with the results of our phase field simulations (shown by solid red lines in Figure 1, also
replicated in Figure 2a by the red dashed lines) demonstrates that the nonuniform v phase
forms from the uniform a phase, when the polarization vectors transversal to the wire
swirl into the vortex to avoid the formation of bound charges at the lateral surface. The
gradient energy, however, makes the v phase less favorable than the uniform a phase in
case of screening. This reduces the critical temperature of the v phase and shifts its phase
boundaries to the smaller strains with respect to the c phase which is evidently not affected
by depolarization effects.

Importantly, the critical temperature of the vortex phase, Tcv, can be analytically calcu-
lated by linearizing the GLD equations, obtained from the variation of the functional (1).
The corresponding linearized equation in cylindrical coordinates r, θ for the axisymmetric
polarization distribution P = Pθ(r)θ̂ assumes the form:

G1212

(
1
r

∂r(r∂r)−
1
r2

)
Pθ = A(Tcv − Tca)Pθ , (7)

which, taking the variational free boundary conditions ∂rPθ(R) = 0, defines the critical
temperature Tcv and yields the corresponding vortex solution below Tcv [29] as

Tcv = Tca

(
1− λ2

1
ξ2

0
R2

)
P = C(Tca − T)1/2 J1

(
λ1

r
R

)
θ̂ . (8)

where J1 is the first-order Bessel function, λ1 = 1.8412 is the first zero of the derivative
∂x J1(x), and ξ0 = (G1212/ATca)

1/2 ' 0.7 nm is the coherence length. The amplitude
coefficient C is found by solving the nonlinear equations. Taking into account that on the
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u0-T diagram, according to Equation (8), the critical temperature of the v phase shifts down
with respect to the screened a phase. We obtain that the cusp in the strain dependence of
the total critical temperature of the system, Tc = max(Tcv, Tcc) also shifts down and to the
left, to lower strains, with respect to the case of the uniform (screened) system. Shown by
the solid red line in Figure 2a, this dependence perfectly coincides with the results of the
phase-field simulations.

Another new phase, emerging from the strained ferroelectric nanowire is the helical h
phase in which the polarization is inclined with respect to the nanowire axis and rotates
around this axis. This phase, appearing at small strains, extends deep into the nonlinear
region lying between the c and v phases and mediates the continuous transition between
them by the gradual inclining of the rotating polarization vector from the direction parallel
to the nanowire to the transversal to the nanowire direction. This helical phase is a state
analogous to other topological states with non-zero helicity harboring skyrmions [15,16],
coreless vortices [56], merons [9], and hopfions [17].

The importance of this phase is that it realizes a polarization state possessing a chiral
asymmetry, a fundamental property of matter describing the systems distinguishable from
their mirror images. The dependence of the quantitative characteristic of polarization
chirality, the chirality density χ = P · (∇× P) [17], on the strain and temperature is shown
in Figure 2b,c, respectively, by the red lines. It is non-zero for the h phase and zero for the c
and v phases, clearly indicating the region of the existence of the helical phase.

5. Conclusions

The theoretical investigation of a one-dimensional strained PbTiO3 nano-wire under-
taken herein allowed to reveal and model the emerging topological states in the ferroelectric
as functions of strain and temperature. Two simulation techniques have been exercised and
compared: the phase-field simulations employing the GLD functional and the atomistic
simulations. Compressive and tensile strains were simulated at the upper and lower bound-
aries of the nano-wire along the axis. The strain–temperature phase diagram showing the
different phases was produced and compared to the phase diagram that came from the
simple free energy minimization procedure and which appeared more similar to the bulk
phase diagram. Furthermore, the proposed novel methods enabled the discovery of two
novel phases related to the considered depolarization effects, the vortex phase, having the
polarization perpendicular to the wire axis, and the h phase, which mediates between the v
phase and the uniform and previously known c phase.

As we demonstrated, the nanoscale confinement of a ferroelectric forming the strained
nanowire stabilizes emerging topological states brings functionalities that do not exist in
bulk materials. Nanowires supporting vortices and helical phase are of special interest
for applications since these topological excitations are well controlled and manipulated
by electric fields. This may promote and trigger giant piezo- and ferroelectric responses.
Remarkably, we revealed that ferroelectric topological excitations in nanowires are con-
trollable not only by electric fields, but are well tunable by the temperature and lattice
strain. The possibility of switching between these states paves the way for using ferro-
electric nanowires as base units for the multi-level logic ferroelectric devices [2,33,57], and
neuromorphic computing circuits [1].

On top of that, chirality, a new functionality of confined ferroelectrics, has recently
received explosive interest [16,17,58,59]. The newly discovered polarization chirality of
nanowires, including its unprecedented tunability by the strains and temperature, opens
a broad spectrum of fascinating directions promising to revolutionize different techno-
logical fields ranging from plasmonic and photonics relevant for quantum optoelectronic
communications to chemical, pharmaceutical, and biomedical applications.
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