38 research outputs found

    Enhancing State Estimator for Autonomous Race Car : Leveraging Multi-modal System and Managing Computing Resources

    Full text link
    This paper introduces an innovative approach to enhance the state estimator for high-speed autonomous race cars, addressing challenges related to unreliable measurements, localization failures, and computing resource management. The proposed robust localization system utilizes a Bayesian-based probabilistic approach to evaluate multimodal measurements, ensuring the use of credible data for accurate and reliable localization, even in harsh racing conditions. To tackle potential localization failures during intense racing, we present a resilient navigation system. This system enables the race car to continue track-following by leveraging direct perception information in planning and execution, ensuring continuous performance despite localization disruptions. Efficient computing resource management is critical to avoid overload and system failure. We optimize computing resources using an efficient LiDAR-based state estimation method. Leveraging CUDA programming and GPU acceleration, we perform nearest points search and covariance computation efficiently, overcoming CPU bottlenecks. Real-world and simulation tests validate the system's performance and resilience. The proposed approach successfully recovers from failures, effectively preventing accidents and ensuring race car safety.Comment: arXiv admin note: text overlap with arXiv:2207.1223

    Characteristics, Outcomes and Predictors of Long-Term Mortality for Patients Hospitalized for Acute Heart Failure: A Report From the Korean Heart Failure Registry

    Get PDF
    BACKGROUND AND OBJECTIVES: Acute heart failure (AHF) is associated with a poor prognosis and it requires repeated hospitalizations. However, there are few studies on the characteristics, treatment and prognostic factors of AHF. The aims of this study were to describe the clinical characteristics, management and outcomes of the patients hospitalized for AHF in Korea. SUBJECTS AND METHODS: We analyzed the clinical data of 3,200 hospitalization episodes that were recorded between June 2004 and April 2009 from the Korean Heart Failure (KorHF) Registry database. The mean age was 67.6±14.3 years and 50% of the patients were female. RESULTS: Twenty-nine point six percent (29.6%) of the patients had a history of previous HF and 52.3% of the patients had ischemic heart disease. Left ventricular ejection fraction (LVEF) was reported for 89% of the patients. The mean LVEF was 38.5±15.7% and 26.1% of the patients had preserved systolic function (LVEF ≥50%), which was more prevalent in the females (34.0% vs. 18.4%, respectively, p<0.001). At discharge, 58.6% of the patients received beta-blockers (BB), 53.7% received either angiotensin converting enzyme-inhibitors or angiotensin receptor blockers (ACEi/ARB), and 58.4% received both BB and ACEi/ARB. The 1-, 2-, 3- and 4-year mortality rates were 15%, 21%, 26% and 30%, respectively. Multivariate analysis revealed that advanced age {hazard ratio: 1.023 (95% confidence interval: 1.004-1.042); p=0.020}, a previous history of heart failure {1.735 (1.150-2.618); p=0.009}, anemia {1.973 (1.271-3.063); p=0.002}, hyponatremia {1.861 (1.184-2.926); p=0.007}, a high level of serum N-terminal pro-B-type natriuretic peptide (NT-proBNP) {3.152 (1.450-6.849); p=0.004} and the use of BB at discharge {0.599 (0.360-0.997); p=0.490} were significantly associated with total death. CONCLUSION: We present here the characteristics and prognosis of an unselected population of AHF patients in Korea. The long-term mortality rate was comparable to that reported in other countries. The independent clinical risk factors included age, a previous history of heart failure, anemia, hyponatremia, a high NT-proBNP level and taking BB at discharge.ope

    Reducing time to discovery : materials and molecular modeling, imaging, informatics, and integration

    Get PDF
    This work was supported by the KAIST-funded Global Singularity Research Program for 2019 and 2020. J.C.A. acknowledges support from the National Science Foundation under Grant TRIPODS + X:RES-1839234 and the Nano/Human Interfaces Presidential Initiative. S.V.K.’s effort was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division and was performed at the Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences (CNMS), a U.S. Department of Energy, Office of Science User Facility.Multiscale and multimodal imaging of material structures and properties provides solid ground on which materials theory and design can flourish. Recently, KAIST announced 10 flagship research fields, which include KAIST Materials Revolution: Materials and Molecular Modeling, Imaging, Informatics and Integration (M3I3). The M3I3 initiative aims to reduce the time for the discovery, design and development of materials based on elucidating multiscale processing-structure-property relationship and materials hierarchy, which are to be quantified and understood through a combination of machine learning and scientific insights. In this review, we begin by introducing recent progress on related initiatives around the globe, such as the Materials Genome Initiative (U.S.), Materials Informatics (U.S.), the Materials Project (U.S.), the Open Quantum Materials Database (U.S.), Materials Research by Information Integration Initiative (Japan), Novel Materials Discovery (E.U.), the NOMAD repository (E.U.), Materials Scientific Data Sharing Network (China), Vom Materials Zur Innovation (Germany), and Creative Materials Discovery (Korea), and discuss the role of multiscale materials and molecular imaging combined with machine learning in realizing the vision of M3I3. Specifically, microscopies using photons, electrons, and physical probes will be revisited with a focus on the multiscale structural hierarchy, as well as structure-property relationships. Additionally, data mining from the literature combined with machine learning will be shown to be more efficient in finding the future direction of materials structures with improved properties than the classical approach. Examples of materials for applications in energy and information will be reviewed and discussed. A case study on the development of a Ni-Co-Mn cathode materials illustrates M3I3's approach to creating libraries of multiscale structure-property-processing relationships. We end with a future outlook toward recent developments in the field of M3I3.Peer reviewe

    Fabrication of Various Carbon Nanotube/Nickel Nanocomposite Powders by Polyol Process

    No full text

    Ecofriendly and Electrically Conductive Cementitious Composites Using Melamine-Functionalized Biochar from Waste Coffee Beans

    No full text
    Owing to the increasing generation of waste coffee powder and the biochar from this waste being considered as alternative conductive carbon fillers, we developed eco-friendly and electrically conductive cementitious composites using biochar from waste coffee beans, which were directly pyrolyzed into eco-friendly and electrically conductive biochar. Via carbonization and graphitization, cyclic organic carbon precursors were transformed into sp2-bonded carbon structures and then functionalized with melamine. The non-covalent functionalization process driven by the electromagnetic process accelerated the mass production and enhanced the monodispersive properties of the cementitious composites. Thus, the melamine-functionalized biochar cementitious composites exhibited an electrical conductivity of 3.64 &times; 10&minus;5 &plusmn; 1.02 &times; 10&minus;6 S/cm (n = 6), which corresponded to an improvement of over seven orders of that of pure concrete. Furthermore, the percolation threshold of biochar was between 0.02 and 0.05 wt.%; thus, an effective conductive network could be formed using low additions of functionalized biochar. As a result, in this study, electrically conductive cementitious composites were developed using waste coffee powder converted into carbon nanomaterials through a newly introduced process of non-covalent functionalization with melamine

    Ecofriendly and Electrically Conductive Cementitious Composites Using Melamine-Functionalized Biochar from Waste Coffee Beans

    No full text
    Owing to the increasing generation of waste coffee powder and the biochar from this waste being considered as alternative conductive carbon fillers, we developed eco-friendly and electrically conductive cementitious composites using biochar from waste coffee beans, which were directly pyrolyzed into eco-friendly and electrically conductive biochar. Via carbonization and graphitization, cyclic organic carbon precursors were transformed into sp2-bonded carbon structures and then functionalized with melamine. The non-covalent functionalization process driven by the electromagnetic process accelerated the mass production and enhanced the monodispersive properties of the cementitious composites. Thus, the melamine-functionalized biochar cementitious composites exhibited an electrical conductivity of 3.64 × 10−5 ± 1.02 × 10−6 S/cm (n = 6), which corresponded to an improvement of over seven orders of that of pure concrete. Furthermore, the percolation threshold of biochar was between 0.02 and 0.05 wt.%; thus, an effective conductive network could be formed using low additions of functionalized biochar. As a result, in this study, electrically conductive cementitious composites were developed using waste coffee powder converted into carbon nanomaterials through a newly introduced process of non-covalent functionalization with melamine

    Size-Dependent Liquid Crystal Behavior of Graphene Oxides for Preparation of Highly Ordered Graphene-Based Films

    No full text
    Featured Application Graphene films with both excellent mechanical and electrical properties is considered as promising materials for multi-functional electronic devices: flexible sensors, wearable heaters, energy storage and conversion electrodes. We report the preparation of a highly-oriented graphene-based film prepared from liquid crystal dispersion of graphene oxides (GOs). We observed that the liquid crystal behavior of GOs is highly affected by the lateral size of GO flakes: the critical concentration for liquid crystal formation decreased with the increase of the lateral size of GO flakes, which is in a good agreement with Onsager&apos;s theory. As a result, we were able to obtain highly-ordered graphene assemblies with large-sized GO flakes (150 +/- 29 mu m) at relatively low concentrations. By applying the shear force, we were able to obtain highly-oriented films from liquid crystal GO flakes. After hydrogen iodide (HI) reduction, GO films showed excellent mechanical strength and electrical conductivity, which were 278% and 283% higher, respectively, than those of films made from smaller sized GO flakes (28 +/- 24 mu m)

    Fabrication of Eco-Friendly Graphene Nanoplatelet Electrode for Electropolishing and Its Properties

    No full text
    Electropolishing is one of the most widely applied metal polishing techniques for passivating and deburring metal parts. Copper is often used as cathode electrode for electropolishing due to its low electrical resistance and low flow values. However, during the electropolishing process, elution of the cathode electrode caused by the electrolyte and remaining oxygen gas also causes critical water pollution and inhibits electropolishing efficiency. Therefore, to achieve an efficient and eco-friendly electropolishing process, development of a highly corrosion resistive and conductive electrode is necessary. We developed a highly oriented graphene nanoplatelet (GNP) electrode that minimizes water pollution in the electropolishing process. We functionalized GNP by a one-step mass-productive ball-milling process and non-covalent melamine functionalization. Melamine is an effective amphiphilic molecule that enhances dispersibility and nematic liquid crystal phase transformation of GNP. The functionalization mechanism and the material interaction were confirmed by Raman spectroscopy after high-speed shear printing. After the electropolishing process by melamine-functionalized GNP electrodes, 304 stainless steel samples were noticeably polished as copper electrodes and elution of carbon was over 50 times less than was the case when using copper electrodes. This electropolishing performance of a highly oriented GNP electrode indicates that melamine-functionalized GNP has great potential for eco-friendly electropolishing applications

    Highly Oriented Carbon Nanotube Sheets for Rechargeable Lithium Oxygen Battery Electrodes

    No full text
    Lithium oxygen batteries are one of the next generation rechargeable batteries. High energy density of lithium oxygen batteries have been considered as a very attractive power option for electric vehicles and many other electronic devices. However, they still faced substantial challenges such as short cycle life, large voltage hysteresis, low gravimetric and volumetric power. Here we developed a highly aligned CNT structured sheet for favorable lithium oxygen cathode electrodes. We fabricated highly oriented CNT sheets by rolling vertically aligned CNT arrays. Highly oriented CNT sheets provide excellent electrical conductivity with favorable mesoporous structure for cathode electrode. As a result, the CNT sheet performed maximum discharging capacity of 1810 mA/gc. We found that electrical conductivity and pore distribution plays important rolls for improving performance in lithium oxygen batteries. This study suggests new strategies of designing highly efficient porous carbon electrodes for lithium oxygen batteries.
    corecore