1,360 research outputs found
Broad Phase Transition of Fluorite-Structured Ferroelectrics for Large Electrocaloric Effect
Field-induced ferroelectricity in (doped) hafnia and zirconia has attracted increasing interest in energy-related applications, including energy harvesting and solid-state cooling. It shows a larger isothermal entropy change in a much wider temperature range compared with those of other promising candidates. The field-induced phase transition occurs in an extremely wide temperature range, which contributes to the giant electrocaloric effect. This article examines the possible origins of a large isothermal entropy change, which can be related to the extremely broad phase transitions in fluorite-structured ferroelectrics. While the materials possess a high entropy change associated with the polar–nonpolar phase transition, which can contribute to the high energy performance, the higher breakdown field compared with perovskites practically determines the available temperature range
Temperature-dependent evolutions of excitonic superfluid plasma frequency in a srong excitonic insulator candidate, TaNiSe
We investigate an interesting anisotropic van der Waals material,
TaNiSe, using optical spectroscopy. TaNiSe has been
known as one of the few excitonic insulators proposed over 50 years ago.
TaNiSe has quasi-one dimensional chains along the -axis. We have
obtained anisotropic optical properties of a single crystal TaNiSe
along the - and -axes. The measured - and -axis optical
conductivities exhibit large anisotropic electronic and phononic properties.
With regard to the -axis optical conductivity, a sharp peak near 3050
cm at 9 K, with a well-defined optical gap ( 1800
cm) and a strong temperature-dependence, is observed. With an increase
in temperature, this peak broadens and the optical energy gap closes around
325 K(). The spectral weight redistribution with respect to the
frequency and temperature indicates that the normalized optical energy gap
() is . The
temperature-dependent superfluid plasma frequency of the excitonic condensation
in TaNiSe has been determined from measured optical data. Our
findings may be useful for future research on excitonic insulators.Comment: 17 pages, 5 figure
Interfacial chemical bonding-mediated ionic resistive switching.
In this paper, we present a unique resistive switching (RS) mechanism study of Pt/TiO2/Pt cell, one of the most widely studied RS system, by focusing on the role of interfacial bonding at the active TiO2-Pt interface, as opposed to a physico-chemical change within the RS film. This study was enabled by the use of a non-conventional scanning probe-based setup. The nanoscale cell is formed by bringing a Pt/TiO2-coated atomic force microscope tip into contact with a flat substrate coated with Pt. The study reveals that electrical resistance and interfacial bonding status are highly coupled together. An oxygen-mediated chemical bonding at the active interface between TiO2 and Pt is a necessary condition for a non-polar low-resistance state, and a reset switching process disconnects the chemical bonding. Bipolar switching mode did not involve the chemical bonding. The nature of chemical bonding at the TiO2-metal interface is further studied by density functional theory calculations
Review and perspective on ferroelectric HfO₂-based thin films for memory applications
The ferroelectricity in fluorite-structure oxides such as hafnia and zirconia has attracted increasing interest since 2011. They have various advantages such as Si-based complementary metal oxide semiconductor-compatibility, matured deposition techniques, a low dielectric constant and the resulting decreased depolarization field, and stronger resistance to hydrogen annealing. However, the wake-up effect, imprint, and insufficient endurance are remaining reliability issues. Therefore, this paper reviews two major aspects: the advantages of fluorite-structure ferroelectrics for memory applications are reviewed from a material’s point of view, and the critical issues of wake-up effect and insufficient endurance are examined, and potential solutions are subsequently discussed
Unusual transport characteristics of nitrogen-doped single-walled carbon nanotubes
Electrical transport characteristics of nitrogen-doped single-walled carbon nanotubes (N-SWCNTs), in which the nitrogen dopant is believed to form a pyridinelike bonding configuration, are studied with the field effect transistor operations. Contrary to the expectation that the nitrogen atoms may induce a n -type doping, the electrical transports through our N-SWCNTs are either ambipolar in vacuum or p -type in air. Through the first-principles electronic structure calculations, we show that the nitrogen dopant indeed favors the pyridinelike configuration and the Fermi level of the pyridinelike N-SWCNT is almost at the intrinsic level.open01
- …