2,596 research outputs found

    Probing Z' gauge boson with the spin configuration of top quark pair production at future ee+e^- e^+ linear colliders

    Get PDF
    We explore the effects of extra neutral gauge boson involved in the supersymmetric E6 model on the spin configuration of the top quark pair produced at the polarized e- e+ collider. Generic mixing terms are considered including kinetic mixing terms as well as mass mixing. In the off-diagonal spin basis of the standard model, we show that the cross sections for the suppressed spin configurations can be enhanced with the effects of the Z' boson through the modification of the spin configuration of produced top quark pair enough to be measured in the Linear Colliders, which provides the way to observe the effects of Z' boson and discriminate the pattern of gauge group decomposition. It is pointed out that the kinetic mixing may dilute the effects of mass mixing terms, and we have to perform the combined analysis.Comment: 19 pages including 5 figures, ReVTe

    The Dynamical Behaviors in (2+1)-Dimensional Gross-Neveu Model with a Thirring Interaction

    Full text link
    We analyze (2+1)-dimensional Gross-Neveu model with a Thirring interaction, where a vector-vector type four-fermi interaction is on equal terms with a scalar-scalar type one. The Dyson-Schwinger equation for fermion self-energy function is constructed up to next-to-leading order in 1/N expansion. We determine the critical surface which is the boundary between a broken phase and an unbroken one in (αc, βc, Nc\alpha_c,~ \beta_c,~ N_c) space. It is observed that the critical behavior is mainly controlled by Gross-Neveu coupling αc\alpha_c and the region of the broken phase is separated into two parts by the line αc=αc(=8π2)\alpha_c=\alpha_c^*(=\frac{8}{\pi^2}). The mass function is strongly dependent upon the flavor number N for α>αc\alpha > \alpha_c^*, while weakly for ααc\alpha \alpha_c^*, the critical flavor number NcN_c increases as Thirring coupling β\beta decreases. By driving the CJT effective potential, we show that the broken phase is energetically preferred to the symmetric one. We discuss the gauge dependence of the mass function and the ultra-violet property of the composite operators.Comment: 19 pages, LaTex, 6 ps figure files(uuencoded in seperate file

    Non-Drude Optical Conductivity of (III,Mn)V Ferromagnetic Semiconductors

    Full text link
    We present a numerical model study of the zero-temperature infrared optical properties of (III,Mn)V diluted magnetic semiconductors. Our calculations demonstrate the importance of treating disorder and interaction effects simultaneously in modelling these materials. We find that the conductivity has no clear Drude peak, that it has a broadened inter-band peak near 220 meV, and that oscillator weight is shifted to higher frequencies by stronger disorder. These results are in good qualitative agreement with recent thin film absorption measurements. We use our numerical findings to discuss the use of f-sum rules evaluated by integrating optical absorption data for accurate carrier-density estimates.Comment: 7 pages, 3 figure

    Exploiting Inter- and Intra-Memory Asymmetries for Data Mapping in Hybrid Tiered-Memories

    Full text link
    Modern computing systems are embracing hybrid memory comprising of DRAM and non-volatile memory (NVM) to combine the best properties of both memory technologies, achieving low latency, high reliability, and high density. A prominent characteristic of DRAM-NVM hybrid memory is that it has NVM access latency much higher than DRAM access latency. We call this inter-memory asymmetry. We observe that parasitic components on a long bitline are a major source of high latency in both DRAM and NVM, and a significant factor contributing to high-voltage operations in NVM, which impact their reliability. We propose an architectural change, where each long bitline in DRAM and NVM is split into two segments by an isolation transistor. One segment can be accessed with lower latency and operating voltage than the other. By introducing tiers, we enable non-uniform accesses within each memory type (which we call intra-memory asymmetry), leading to performance and reliability trade-offs in DRAM-NVM hybrid memory. We extend existing NVM-DRAM OS in three ways. First, we exploit both inter- and intra-memory asymmetries to allocate and migrate memory pages between the tiers in DRAM and NVM. Second, we improve the OS's page allocation decisions by predicting the access intensity of a newly-referenced memory page in a program and placing it to a matching tier during its initial allocation. This minimizes page migrations during program execution, lowering the performance overhead. Third, we propose a solution to migrate pages between the tiers of the same memory without transferring data over the memory channel, minimizing channel occupancy and improving performance. Our overall approach, which we call MNEME, to enable and exploit asymmetries in DRAM-NVM hybrid tiered memory improves both performance and reliability for both single-core and multi-programmed workloads.Comment: 15 pages, 29 figures, accepted at ACM SIGPLAN International Symposium on Memory Managemen

    High-Temperature Hall Effect in Ga(1-x)Mn(x)As

    Full text link
    The temperature dependence of the Hall coefficient of a series of ferromagnetic Ga(1-x)Mn(x)As samples is measured in the temperature range 80K < T < 500K. We model the Hall coefficient assuming a magnetic susceptibility given by the Curie-Weiss law, a spontaneous Hall coefficient proportional to rho_xx^2(T), and including a constant diamagnetic contribution in the susceptibility. For all low resistivity samples this model provides excellent fits to the measured data up to T=380K and allows extraction of the hole concentration (p). The calculated p are compared to alternative methods of determining hole densities in these materials: pulsed high magnetic field (up to 55 Tesla) technique at low temperatures (less than the Curie temperature), and electrochemical capacitance- voltage profiling. We find that the Anomalous Hall Effect (AHE) contribution to rho_xy is substantial even well above the Curie temperature. Measurements of the Hall effect in this temperature regime can be used as a testing ground for theoretical descriptions of transport in these materials. We find that our data are consistent with recently published theories of the AHE, but they are inconsistent with theoretical models previously used to describe the AHE in conventional magnetic materials.Comment: 6 pages, 5 figures, 1 table. Accepted to Phys.Rev.

    On bulk singularities in the random normal matrix model

    Get PDF
    We extend the method of rescaled Ward identities of Ameur-Kang-Makarov to study the distribution of eigenvalues close to a bulk singularity, i.e. a point in the interior of the droplet where the density of the classical equilibrium measure vanishes. We prove results to the effect that a certain "dominant part" of the Taylor expansion determines the microscopic properties near a bulk singularity. A description of the distribution is given in terms of a special entire function, which depends on the nature of the singularity (a Mittag-Leffler function in the case of a rotationally symmetric singularity).Comment: This version clarifies on the proof of Theorem

    Atomistic origin of high-concentration Ce³⁺ in {100}-faceted Cr- substituted CeO₂ nanocrystals

    Get PDF
    Improving the potential of promising CeO2-based nanocatalysts in practical applications requires an atomic-scale analysis of the effects of active dopants on the distribution of Ce valence states and the formation of oxygen vacancies (VOs). In this study, a Cr dopant is introduced into the cubic {100}-faceted CeO2 nanocrystals (NCs) with an average size of 7.8 nm via supercritical water. The Cr dopants substitute Ce sites in the amount of approximately 3 mol%. Based on the aberration-corrected STEM-EELS, the effects of Cr dopant on the distribution of cation valence states in the Cr-doped CeO2 NCs are investigated layer by layer across the ultrafine Cr-substituted CeO2 NC perpendicular to the {100} exposed facet. It is found that an increased amount of Ce3+ cations is present in Cr-substituted CeO2 NCs, particularly in the internal atomic layers, compared to the pristine CeO2 NCs. The atomic-scale analysis of the local structure combined with theoretical calculations demonstrates that Cr dopant reduces the formation energy of VOs and increases mobility of oxygen atoms for the nano-sized CeO2. These effects, in principle, result in an improved oxygen storage capacity and provide a fundamental understanding of role of the dopant in the formation and distribution of VOs in the doped CeO2 NCs

    5D UED: Flat and Flavorless

    Full text link
    5D UED is not automatically minimally flavor violating. This is due to flavor asymmetric counter-terms required on the branes. Additionally, there are likely to be higher dimensional operators which directly contribute to flavor observables. We document a mostly unsuccessful attempt at utilizing localization in a flat extra dimension to resolve these flavor constraints while maintaining KK-parity as a good quantum number. It is unsuccessful insofar as we seem to be forced to add brane operators in such a way as to precisely mimic the effects of a double throat warped extra dimension. In the course of our efforts, we encounter and present solutions to a problem common to many extra dimensional models in which fields are "doubly localized:" ultra-light modes. Under scrutiny, this issue seems tied to an intrinsic tension between maintaining Kaluza-Klein parity and resolving mass hierarchies via localization.Comment: 27 pages, 6 figure
    corecore