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Constr Approx

1 Introduction and Main Results

1.1. Consider a system {ζ j }n
1 of identical point-charges in the complex plane in the

presence of an external field nQ, where Q is a suitable function. The system is assumed
to be picked randomly with respect to the Boltzmann–Gibbs probability law at inverse
temperature β = 1,

dPn(ζ ) = 1

Zn
e−Hn(ζ ) d 2nζ, (1.1)

where Hn is the weighted energy of the system,

Hn(ζ1, . . . , ζn) =
∑

j �=k

log
1∣∣ ζ j − ζk

∣∣ + n
n∑

j=1

Q(ζ j ).

The constant Zn in (1.1) is chosen so that the total mass is 1.
It is well known that (with natural conditions on Q) the normalized counting mea-

suresμn = 1
n

∑n
j=1 δζ j converge to Frostman’s equilibrium measure as n → ∞. This

is a probability measure of the form

dσ(ζ ) = χS(ζ )�Q(ζ ) dA(ζ ), (1.2)

where χS is the indicator function of a certain compact set S called the droplet.
We necessarily have�Q ≥ 0 on S. In the papers [4,5], themethod of rescaledWard

identities was introduced and applied to study microscopic properties of the system
{ζ j }n

1 close to a (moving) point p ∈ S. The situation in those papers is however
restricted by the condition that the point p be “regular” in the sense that �Q(p) ≥
const. > 0. In this paper, we extend the method to allow for a “bulk singularity,” i.e.,
an isolated point p in the interior of S at which �Q = 0.

A bulk singularity tends to repel particles away, which means that one must use
a relatively coarse scale in order to capture the relevant structure. We prove results
to the effect that (in many cases) the dominant terms in the Taylor expansion of �Q
about p determine the microscopic properties of the system in the vicinity of p. Our
characterization uses the Bergman kernel for a certain space of entire functions, asso-
ciated with these dominant terms. In particular, we obtain quite different distributions
depending on the degree to which �Q vanishes at p.

Remark It is well known that the particles {ζ j }n
1 can be identified with eigenvalues

of random normal matrices with a suitable weighted distribution. The details of this
identification are not important for the present investigation. However, following tra-
dition, we shall sometimes speak of a “configuration of random eigenvalues” instead
of a “particle-system.”

Remark The meaning of the convergence μn → σ is that En[μn( f )] → σ( f ) as
n → ∞, where f is a suitable test-function, say, continuous and bounded, and En is
expectation with respect to (1.1). In fact, more can be said, see [2].

Notation We write � = ∂∂̄ for 1/4 of the usual Laplacian and dA for 1/π
times Lebesgue measure on the plane C. Here ∂ = 1

2 (∂/∂x − i∂/∂y) and ∂̄ =
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1
2 (∂/∂x + i∂/∂y) are the usual complex derivatives. We write z̄ (or occasionally z∗)
for the complex conjugate of a number z. A continuous function h(z, w)will be called
Hermitian if h(z, w) = h(w, z)∗. h is called Hermitian-analytic (Hermitian-entire) if
h is Hermitian and analytic (entire) in z and w̄. A Hermitian function c(z, w) is called
a cocycle if there is a unimodular function g such that c(z, w) = g(z)ḡ(w), where for
functions we use the notation f̄ (z) = f (z)∗. We write D(p, r) for the open disk with
center p and radius r .

1.2 Potential and Equilibrium Measure

The function Q is usually called the “external potential.” This function is assumed to
be lower semi-continuous and real-valued, except that it may assume the value+∞ in
portions of the plane. We also assume: (i) the set 
0 = {Q < ∞} has dense interior,
(ii) Q is real-analytic in Int
0, and (iii) Q satisfies the growth condition

lim inf
ζ→∞

Q(ζ )

log | ζ | 2 > 1. (1.3)

For a suitable measure on C, we define its Q-energy by

IQ[μ] =
∫∫

C2

log
1

| ζ − η | dμ(ζ )dμ(η) +
∫

C

Q dμ.

The equilibrium measure σ = σQ is defined as the probability measure that minimizes
IQ[μ] over all compactly supported Borel probability measures μ. Existence and
uniqueness of such a minimizer is well known, see, e.g., [28], where also the explicit
expression (1.2) is derived, with S = supp σ .

1.3 Rescaling

Recall that�Q ≥ 0 on S. The purpose of the present investigation is to study (isolated)
points p ∈ Int S at which �Q(p) = 0. We refer to such points as bulk singularities.
Without loss of generality, we can assume that p = 0 is such a point, and we study
the microscopic behavior of the system {ζ j }n

1 near 0.
By themicroscopic scale at p = 0, wemean the positive number rn = rn(p) having

the property

n
∫

D(p,rn)

�Q dA = 1.

Intuitively, rn(p) means the expected distance from a particle at p to its closest neigh-
bor. If p is a regular bulk point, then, as is easily seen,

rn(p) = 1/
√

n�Q(p) + O(1/n), (n → ∞),
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which gives the familiar scaling factor used in papers such as [1,4].
Since the Laplacian �Q vanishes at 0 and is real-analytic and nonnegative in

a neighborhood, there is an integer k ≥ 1 such that the Taylor expansion of �Q
about 0 takes the form �Q(ζ ) = P̃(ζ ) + O(| ζ | 2k−1), where P̃(x + iy) =∑2k−2

j=0 a j x j y 2k−2− j is a positive semi-definite polynomial, homogeneous of degree
2k − 2.

We refer to the number 2k − 2 = degree P̃ as the type of the bulk-singularity at
the origin. We shall say that the singularity is non-degenerate if P̃ is positive definite,
i.e., if there is a positive constant c such that P̃(ζ ) ≥ c | ζ | 2k−2 . Hereafter, we tacitly
assume that this condition is satisfied.

It will be important to have a good grasp of the size of rn = rn(0) as n → ∞. For
this, we note that

1 = n
∫

| ζ |<rn

�Q(ζ ) dA(ζ )

= n
∫ rn

0
r 2k−1 dr

1

π

∫ 2π

0
P̃(e iθ ) dθ + O(n r 2k+1

n )

= τ−2k
0 n r 2k

n + O(n r 2k+1
n ),

where τ0 = τ0[Q, 0] is the positive constant satisfying

τ−2k
0 = 1

2πk

∫ 2π

0
P̃(eiθ ) dθ. (1.4)

We will call τ0 the modulus of the bulk singularity at 0. We have the following lemma;
the simple verification is omitted here.

Lemma 1.1 For the microscopic scale rn at0, we havern = τ0 n−1/2k (1+O(n−1/2k))

as n → ∞, where τ0 is the modulus (1.4).

Example For the Mittag–Leffler potential Q = | ζ | 2k , the droplet is the disk | ζ | ≤
k−1/2k . For k = 1, we have the well-known Ginibre potential, cf., e.g., [16, Chapter
15]. For k ≥ 2, the Mittag–Leffler potential has a bulk singularity at the origin of type
2k − 2. It is easy to check that the modulus equals τ0 = k−1/2k .

Let p be an integer, 1 ≤ p ≤ n. The p-point function of the point-process {ζ j }n
1 is

the function of p complex variables η1, . . . , ηp defined by

Rn,p(η1, . . . , ηp) = lim
δ→0

Pn
({ζ j }n

1 ∩ D(η�, δ) �= ∅, � = 1, . . . , p
)

δ2p
.

The p-point function Rn,p should really be understood as the density in the measure
Rn,p(η1, . . . , ηp) dA(η1) · · · dA(ηp). This should be kept in mind when we subject
the η j to various transformations.
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A well-known algebraic fact (“Dyson’s determinant formula,” see, e.g., [26] or [28,
p. 249]) states that the p-point function takes the form of a determinant,

Rn,p(η1, . . . , ηp) = det
(
Kn(ηi , η j )

)p
i, j=1 ,

where Kn is a certain Hermitian function called a correlation kernel of the process
(Cf. Sect. 2). Of particular importance is the one-point function Rn = Rn,1.

We now rescale about the origin on the microscopic scale rn about the bulk singu-
larity at 0. The rescaled system {z j }n

1 is taken to be

z j = r−1
n ζ j , j = 1, . . . , n, (1.5)

with the law given by the image of the Boltzmann–Gibbs distribution (1.1) under the
scaling (1.5).

It follows that the rescaled system {z j }n
1 is determinantal with p-point function

Rn,p(z1, . . . , z p) = r 2p
n Rn,p(ζ1, . . . , ζp) = det(Kn(zi , z j ))

p
i, j=1,

where the correlation kernel Kn for the rescaled system is given by

Kn(z, w) = r 2
n Kn(ζ, η), (z = r−1

n ζ, w = r−1
n η).

In particular, the one-point function of the process {z j }n
1 is Rn(z) = Kn(z, z).

Clearly, a correlation kernel Kn(z, w) is only determined up to multiplication by a
cocycle cn(z, w).

1.4 Main Structural Lemma

Now suppose that Q has a bulk-singularity of type 2k −2 at the origin. It will be useful
to single out a canonical “dominant part” of Q near 0. To this end, let P(x + iy) be
the Taylor polynomial of Q of degree 2k about the origin. Let H be the holomorphic
polynomial

H(ζ ) = Q(0) + 2∂ Q(0) · ζ + ∂2Q(0) · ζ 2 + · · · + 2

(2k)!∂
2k Q(0) · ζ 2k .

We will write

Q0 = P − Re H.

We then have the basic decomposition

Q = Q0 + Re H + Q1, (1.6)

where Q1(ζ ) = O(| ζ | 2k+1) as ζ → 0.
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The following lemma gives the basic structure of limiting kernels at a singular point
(not necessarily in the bulk).

Lemma 1.2 There exists a sequence cn of cocycles such that every subsequence of
the sequence cn Kn has a subsequence converging uniformly on compact subsets to
some Hermitian function K . Every limit point K has the structure

K (z, w) = L(z, w)e−Q0(τ0z)/2−Q0(τ0w)/2,

where L is a Hermitian-entire function.

Following [4], we refer to a limit point K in Lemma 1.2 as a limiting kernel, whereas
L is a limiting holomorphic kernel. We also speak of the limiting 1-point function

R(z) = K (z, z) = L(z, z)e−Q0(τ0z).

Note that R determines K and L by polarization.

Remark Each limiting one-point function gives rise to a unique limiting point field
(or “infinite particle system”) {z j }∞1 with intensity functions

Rk(z1, . . . , z p) = det(K (zi , z j ))
p
i, j=1.

(This follows from Lenard’s theory, see [29] or [4].) It is possible that a limiting point
field is trivial in the sense that K = 0.

1.5 Universality Results

Wewill proveuniversality for twokinds of bulk singularities.Referring to the canonical
decomposition Q = Q0 + Re H + Q1 with Q0 of degree 2k, we say a singularity at
0 is:

(i) homogeneous if Q1 = 0 and H(z) = c z 2k for some constant c,
(ii) dominant radial if Q0 is radially symmetric, i.e., Q0(z) = Q0(| z |).
We remark that a homogeneous singularity is necessarily located in the bulk of the
droplet; for other types of singularities this must be postulated.

In the following,wedenote by L0 theBergmankernel of the spaceof entire functions
L2

a(μ0) associated with the measure

dμ0(z) = e−Q0(τ0z) dA(z).

Theorem 1.3 If there is a homogeneous singularity at 0, we have L = L0 for each
limiting holomorphic kernel L.

The next result concerns limiting holomorphic kernels L(z, w) which are rotation-
ally symmetric in the sense that L(z, w) = L(zeit , weit ) for all real t . Equivalently, L
is rotationally symmetric if there is an entire function E such that L(z, w) = E(zw̄).
(We leave the simple verification of this to the reader.)
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Fig. 1 Some level curves of R0(z) = L0(z, z)e−Q0(τ0z) for Q0(z) = | z | 4 − | z | 2 Re( z 2 )/2 and the
graph of R0(x) = M2(x 2) e−Q0(τ0x) for the Mittag–Leffler potential Q0(z) = | z | 4. The lower (red)
curve shows the Laplacian �z [Q0(τ0z)]. (color figure online)

Theorem 1.4 If a bulk singularity at 0 is dominant radial, then L = L0 for each
rotationally symmetric limiting kernel.

The result was conjectured in [4, Section 7.3].
We do not know whether or not each limiting kernel at a dominant radial bulk

singularity is rotationally symmetric. This question has some similarity to that of
deciding the translation invariance of limiting kernels at regular boundary points. See
[4] for several comments about this, notably the interpretation in terms of a twisted
convolution equation in Section 7.1.

It is natural to conjecture that the kernel in Theorem 1.3 be equal to the limiting
kernel in general, regardless of the nature of a (nondegenerate) bulk singularity.

Remark Note that, as a consequence of the reproducing property of the kernel L0,
we have in the situation of the above theorems the mass-one equation for a limiting
kernel K ,

∫
C

| K (z, w) | 2 dA(w) = R(z).

Example For the Mittag–Leffler potential Q = | ζ | 2k , it is possible to calculate the
limiting kernel L explicitly, using orthogonal polynomials (see [4, Section 7.3] or[30]).
The result is that

L(z, w) = Mk(zw̄), (1.7)

where

Mk(z) = τ 2
0 k

∞∑

0

(τ 2
0 z) j

�
(
1+ j

k

) .

The function Mk can be expressed as Mk(z) = τ 2
0 k E1/k,1/k(τ

2
0 z), where Ea,b is the

Mittag–Leffler function (see [18])

Ea,b(z) =
∞∑

0

z j

�(aj + b)
.
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Fig. 2 Some level curves of the Berezin kernel B(z, w) rooted at z = 0 and z = 1 pertaining to Q0(z) =
| z | 4

Using Theorem 1.3, we can now see that the kernel in (1.7) is universal for poten-
tials of the form Q = | ζ | 2k + Re

(
c ζ 2k

)
. (We must insist that | c | < 1 to insure that

the growth assumption of Q at infinity is satisfied, see (1.3).) By Theorem 1.4, the uni-
versality holds also for all rotationally symmetric limiting kernels L(z, w) = E(zw̄)

for more general potentials of the form Q(ζ ) = | ζ | 2k + ReH(ζ ) + Q1(ζ ).

Remark For k = 1 (i.e., when 0 is a “regular” bulk point) the space L2
a(μ0) becomes

the standard Fock space, normed by ‖ f ‖ 2 = ∫
C

| f (z) | 2e− | z | 2 dA(z). In this case,
we have R = 1 for the limiting 1-point function, by the well-knownGinibre(∞)-limit.
(See, e.g., [4].)

1.6 Further Results

In the following, we consider a potential with canonical decomposition Q = Q0 +
Re H + Q1. Following [4], we shall prove auxiliary results that fall into three cate-
gories.
Ward’s Equation Let R(z) = K (z, z) be a limiting kernel in Lemma 1.2. At a point z
where R > 0, we write

B(z, w) = | K (z, w) | 2
K (z, z)

= | L(z, w) | 2
L(z, z)

e−Q0(τ0w), (1.8)

C(z) =
∫

C

B(z, w)

z − w
dA(w). (1.9)

We call B(z, w) a limiting Berezin kernel rooted at z; C(z) is its Cauchy transform.
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Theorem 1.5 Let R be a limiting 1-point function.

(i) Zero-one law: Either R = 0 identically, or else R > 0 everywhere.
(ii) Ward’s equation: If R is nontrivial, we have that

∂̄C(z) = R(z) − �z [Q0(τ0z)] − �z log R(z). (1.10)

As n → ∞, it may well happen that Rn → 0 locally uniformly (if the singularity
at 0 is in the exterior of the droplet).
Apriori Estimates To rule out the possibility of trivial limiting kernels, we shall use
the following result.

Theorem 1.6 Let R be any limiting kernel, and let R0(z) = L0(z, z)e−Q0(τ0z), where
L0 is the Bergman kernel of the space L2

a(μ0). Then

(i) R0(z) = �z[Q0(τ0z)] · (1 + O(z1−k)), as z → ∞,
(ii) R(z) = �z[Q0(τ0z)] · (1 + O(z1−k)), as z → ∞.

Part (i) depends on an estimate of the Bergman kernel for the space L2
a(μ0). Related

estimates valid when Q0 is a function satisfying uniform estimates of the type 0 <

c ≤ �Q0 ≤ C are found in Lindholm’s paper [24].
In our situation, the function �Q0 takes on all values between 0 and +∞, which

means that the results from [24] are not directly applicable. It is convenient to include
an elementary discussion for the case at hand, following the method of “approximate
Bergman projections” in the spirit of [4, Section 5]. This has the advantage that proof
of part (ii) follows after relatively simple modifications.

Remark Part (i) of Theorem 1.6 seems to be of some relevance for the investigation
of density conditions for sampling and interpolation in Fock-type spaces L2

a(μ0); see
the recent paper [17, Remark 5.6], cf. [31] for the classical Fock space case. (A very
general result of this sort was obtained by different methods in the paper [25], where
the hypothesis on the “weight” Q0 is merely that the Laplacian �Q0 be a doubling
measure.)

Remark In the case Q = | z | 2λ, the asymptotic formula in Theorem 1.6 (i) has an
alternative proof by more classical methods, using an asymptotic expansion for the
function Mλ(z) as z → ∞ ([18, Section 4.7]). The formula (i) can be recognized as
giving the leading term in that expansion.

Positivity Recall that a Hermitian function K is called a positive matrix if

N∑

i, j=1

αi ᾱ j K (zi , z j ) ≥ 0

for all points z j ∈ C and all complex scalars α j . It is clear that each limiting (holo-
morphic) kernel is a positive matrix.
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Theorem 1.7 Let L be a limiting holomorphic kernel. Then L is the Bergman kernel
for a Hilbert space H∗ of entire functions that sits contractively in L2

a(μ0). Moreover,
L0 − L is a positive matrix.

Here L0 is the Bergman kernel of L2
a(μ0).

It may well happen that the spaceH∗ degenerates to {0}. This is the case when the
singularity at 0 is located in the exterior of the droplet.

Comments An interesting generalization of our situation is obtained by allowing for
a suitably scaled logarithmic singularity at a (regular or singular) bulk point. More
precisely, if Q̃ is smooth in a neighborhood of 0, we consider a potential of the form
Q(ζ ) = Q̃(ζ ) + 2(c/n) log | ζ |, where c < 1 is a constant. Rescaling by z = r−1

n ζ ,
where c+n

∫
D(0,rn)

�Q̃ dA = 1, we find rn ∼ (1−c)1/2kτ0n−1/2k as n → ∞, where

2k − 2 is the type of Q̃ and τ0 = τ0[Q̃, 0]. It is hence natural to define the dominant
part by Q0(z) := c′ Q̃0(z) + 2c log | z |, where Q̃0 is the dominant part of Q̃ and c′ a
suitable constant depending on c. In particular, if Q(ζ ) = c1| ζ | 2λ + (c2/n) log | ζ |
with suitable c1, c2 > 0, the dominant part becomes of the type

Q0(z) = r 2λ + 2

(
1 − λ

μ

)
log r, r = | z |, (1.11)

for suitable constants λ and μ. The potential (1.11) was introduced in the paper [3],
where all rotationally symmetric solutions to the corresponding Ward equation (1.10)
were found. Recently, certain potentials of this form were studied in a context of Rie-
mann surfaces, in a scaling limit about certain types of singular points (conical singular-
ities and branch points), see [22].Wewill return to this issue in a forthcoming paper [6].

An interesting occurrence of Mittag–Leffler potentials with logarithmic singulari-
ties is found in the paper [11]; the dominant part Q0 = |z|2 − (2/M) log |z| is there
connected to the eigenvalue density of the product of M complex Gaussian matrices.
We are grateful to one of the referees for bringing this to our attention.

As in [4, Section 7.7], we note that it is possible to introduce an “inverse tempera-
ture” β into the setting; the case at hand then corresponds to β = 1. For general β, the
rescaled process {z j }n

1 is no longer determinantal, but the rescaled intensity functions

Rβ
n,p make perfect sense. As n → ∞, we formally obtain a “Ward’s equation at a bulk

singularity” of the form

∂̄Cβ(z) = Rβ(z) − �z [Q0(τ0z)] − 1

β
�z log Rβ(z). (1.12)

Here Cβ(z) should be understood as the Cauchy transform of the β-Berezin ker-
nel Bβ(z, w) = (Rβ

1 (z)Rβ
1 (w) − Rβ

2 (z, w))/Rβ
1 (z). The objects in (1.12) are so far

understood mostly on a physical level. We now give a few remarks in this spirit.
First, if 0 is a regular bulk-point, i.e., if �Q(0) > 0, then it is believed that Rβ = 1

identically, i.e., the right-hand side in (1.12) should vanish. The equation (1.12) then
reflects the fact that the Berezin kernel Bβ(z, w) = bβ(r) depends only on the distance
r = | z − w |. When β = 1, one has the well-known identity b1(r) = e− r 2

. For other
β we do not know of an explicit expression, but it was shown by Jancovici in [20] that
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bβ(r) = b1(r) + (β − 1) f (r) + O((β − 1)2), (β → 1),

where f is a certain explicit function. In the bulk-singular case, the kernel Bβ(z, w)

will not just depend on | z − w |, but still it seems natural to expect that we have an
expansion of the form

Bβ(z, w) = b1(z, w) + (β − 1) f (z, w) + O((β − 1)2), (β → 1), (1.13)

where b1(z, w) = | L0(z, w) | 2 e−Q0(τ0w)/L0(z, z), L0 being the Bergman kernel of
the space L2

a(μ0). A natural problem, which will not be taken up here, is to determine
the function f (z, w) in (1.13). (A similar investigation at regular boundary points was
made recently in the paper [12].)

For boundary points, the term “singular” has a different meaning than for bulk
points. Indeed, the singular points p (cusps or double points) studied in the paper [5]
all satisfy �Q(p) > 0. An example of a situation at which �Q = 0 at a boundary
point (at 0) is provided by the potential Q = | ζ | 4 −√

2Re( ζ 2 ). (The boundary of S
is here a “figure 8” with 0 at the point of self-intersection, see [9].) A natural question
is whether it is possible to define nontrivial scaling limits at (or near) these kinds of
singular points, in the spirit of [5].

There is a parallel theory for scaling limits for Hermitian randommatrix ensembles.
In this situation, the droplet is a union of compact intervals. It is well known that the
sine-kernel appears in the scaling limit about a “regular bulk point,” i.e., an interior
point where the density of the equilibrium measure is strictly positive. In a generic
case, all points are regular, see [21]. Special bulk points where the equilibrium density
vanishes may be called “singular”; at such points other types of universality classes
appear, see [10,14,27]; cf. [15] for a corresponding nonbulk situation.

Finally, we wish to mention that the investigations in this paper were partly moti-
vated by applications to the distribution of Fekete points close to a bulk singularity
(see [1]). This issue will be taken up in a later publication.

Addendum After the completion of this paper, at least two relevant papers have
appeared. The note [7] generalizes and improves some of our above results, notably
Theorem 1.6, in a context allowing for the logarithmic singularities discussed above.
The paper [23] investigates logarithmic singularities with respect to properties of asso-
ciated orthogonal polynomials.

1.7 Plan of the Paper

In Sect. 2, we prove the general structure formula for limiting kernels (Lemma 1.2).We
also prove the positivity theorem (Theorem 1.7). In Sect. 3, we prove Ward’s equation
and the zero-one law (Theorem 1.5). In Sect. 4, we prove the universality results
(Theorems 1.3 and 1.4). Our proof of Theorem 1.4 depends on the apriori estimate
from Theorem 1.6, part (ii). In the last two sections, we prove the asymptotics for the
functions R0 and R in Theorem 1.6. For R0 (part (i)), see Sect. 5; for R (part (ii)), see
Sect. 6.
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1.8 Convention

Multiplying the potential Q by a suitable constant, we can in the following assume
that the modulus τ0 = 1. In fact, the slightly more general assumption that τ0 =
1 + O(n−1/2k) as n → ∞ will do equally well. This means the microscopic scale
about 0 can be taken as rn = n−1/2k , where 2k − 2 is the type of the singularity. This
will be assumed throughout the rest of this paper.

2 Structure of Limiting Kernels

In this section, we prove Lemma 1.2 on the general structure of limiting kernels and the
positivity Theorem 1.7. We shall actually prove a little more: a limiting holomorphic
kernel can be written as a subsequential limit of kernels for certain specific Hilbert
spaces of entire functions. In later sections, we will use this additional information for
our analysis of homogeneous bulk singularities.

2.1 Spaces of Weighted Polynomials

It is well known that we can take for correlation kernel for the process {ζ j }n
1 the

reproducing kernel for a suitable space of weighted polynomials. Here the “weight”
can either be incorporated into the polynomials themselves or into the norm of the
polynomials. We will use both these possibilities. In the following, we shall use the
symbol “Pol(n)” for the linear space of holomorphic polynomials of degree at most
n − 1 (without any topology). We write μn for the measure dμn = e−nQ dA.

We let Pn denote the space Pol(n) regarded as a subspace of L2(μn). The symbol
Wn will denote the set of weighted polynomials f = p e−nQ/2, (p ∈ Pol(n)) regarded
as a subspace of L2 = L2(dA). We write kn and Kn for the reproducing kernels of
Pn and Wn , respectively, and we note that

Kn(ζ, η) = kn(ζ, η) e−nQ(ζ )/2−nQ(η)/2.

Now suppose that Q has a bulk singularity at the origin, of type 2k − 2 and rescale
at the microscopic scale by

kn(z, w) = r 2
n kn(ζ, η), Kn(z, w) = r 2

n Kn(ζ, η), (z = r−1
n ζ, w = r−1

n η).

2.2 Limiting Holomorphic Kernels

Suppose that there is a bulk singularity of type 2k − 2 at the origin. Consider the
canonical decomposition Q = Q0 + Re H + Q1 and write h = Re H . Thus h is of
degree at most 2k, Q0 is a positive definite homogeneous polynomial of degree 2k,
and Q1(ζ ) = O(| ζ | 2k+1) as ζ → 0.

Lemma 2.1 For each compact subset V of C, there is a constant C = C(V ) such
that Kn(z, z) ≤ C for z ∈ V .
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Proof Let W̃n denote the space of all “rescaled” weighted polynomials p · e−Q̃n/2,
where p ∈ Pol(n) and Q̃n(z) = nQ(rnz). Regarding W̃n as a subspace of L2, we
recognize that Kn is the reproducing kernel of W̃n . Hence

Kn(z, z) = sup{ | f (z) | 2 ; f ∈ W̃n, ‖ f ‖ ≤ 1 }. (2.1)

Fix a number δ > 0, and let Vδ = { z ∈ C ; dist(z, V ) ≤ δ }. We also pick a number
α > sup{ �Q0(z) ; z ∈ Vδ }. Now let u be an analytic function in a neighborhood of
Vδ , and consider the function gn(z) = u(z) e− Q̃n(z)/2+α | z | 2/2. Note that

�Q̃n(z) = n r 2
n (�Q0(rnz) + �Q1(rnz))

= n r 2k
n �Q0(z) + O(n r 2k+1

n ), (n r 2k
n = 1).

Hence� log | gn(z) | 2 ≥ −�Q̃n(z)+α > 0 for all sufficiently large n and all z ∈ Vδ .
Thus | gn | 2 is subharmonic in Vδ , so for z ∈ V ,

| gn(z) | 2 ≤ δ−2
∫

D(z,δ)
| gn(w) | 2 dA(w)

= δ−2e α (| z |+δ) 2
∫

D(z,δ)
| u(w) | 2 e−Q̃n(w)dA(w).

We obtain

| u(z) | 2 e−Q̃n(z) ≤ δ−2e α
(
2 MV δ + δ 2

) ∫

D(z,δ)
| u | 2e−Q̃ndA, (2.2)

where MV = supz∈V | z |. By (2.1) and (2.2), Kn(z, z) is bounded for z ∈ V . ��
We now use the holomorphic polynomial H in the decomposition Q = Q0 +

Re H + Q1 to define a Hermitian-entire function (“rescaled holomorphic kernel”) by

Ln(z, w) = r 2
n kn(ζ, η) e−n(H(ζ )+H̄(η))/2, z = r−1

n ζ, w = r−1
n η. (2.3)

Let us write
Hn(z) = n H(rnz), Q1,n(z) = n Q1(rnz),

so that nQ(rnz) = Q0(z) + Re Hn(z) + Q1,n(z) and

Ln(z, w) = kn(z, w) e−Hn(z)/2−H̄n(w)/2.

Define a Hilbert space of entire functions by

Hn = { f = q · e−Hn/2; q ∈ Pol(n)}

equipped with the norm of L2(μ̃n), where

dμ̃n(z) = e−Q0(z)−Q1,n(z) dA(z). (2.4)

123



Constr Approx

Observe that Q1,n = O(rn) as n → ∞, where the O-constant is uniform on each
given compact subset of C. In particular, μ̃n → μ0 vaguely where dμ0 = e−Q0 dA.

The following result implies Lemma 1.2; it also generalizes [4, Lemma 4.9].

Lemma 2.2 Each subsequence of the kernels Ln has a further subsequence converg-
ing locally uniformly to a Hermitian-entire limit L. Furthermore, Ln is the reproducing
kernel of the space Hn, and L satisfies the “mass-one inequality,”

∫
| L(z, w) | 2 dμ0(w) ≤ L(z, z). (2.5)

Finally, there exists a sequence of cocycles cn such that each subsequence of cn Kn

converges locally uniformly to a Hermitian function K of the type K (z, w) =
L(z, w)e−Q0(z)/2−Q0(w)/2.

Proof Define a function En(z, w) by

En(z, w) = e n(H(ζ )/2+H̄(η)/2−Q(ζ )/2−Q(η)/2)

= e−Q0(z)/2−Q0(w)/2−Q1,n(z)/2−Q1,n(w)/2+i Im(Hn(z)−Hn(w))/2.

Note that Kn = Ln En , where Ln is the Hermitian-entire kernel (2.3). Now, if h =
Re H , then

Im(Hn(z) − Hn(w))/2 =
2k∑

j=1

n r j
n Im

(
∂ j h(0)

j ! (z j − w j )

)
.

We have shown that

En(z, w) = cn(z, w) e−Q0(z)/2−Q0(w)/2 (1 + o(1)), (n → ∞),

where o(1) → 0 locally uniformly on C
2 and cn is a cocycle:

cn(z, w) =
2k∏

j=1

exp

[
i n r j

n Im

(
∂ j h(0)

j ! (z j − w j )

)]
.

On the other hand, for each compact subset V of C2, there is a constant C such
that

| Ln(z, w) | 2 =
∣∣∣∣

Kn(z, w)

En(z, w)

∣∣∣∣
2

≤ C Kn(z, z) Kn(w,w) e Q0(z)+Q0(w)

for sufficiently large n. By Lemma 2.1, the functions Ln have a uniform bound on
V . We have shown that {Ln} is a normal family. We can hence extract a subsequence
{Ln�

}, converging locally uniformly to a Hermitian-entire function L(z, w).
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Choosing cocycles cn such that cn En → e−Q0(z)/2−Q0(w)/2 uniformly on compact
subsets as n → ∞, we now obtain that

cn�
Kn�

= cn�
En�

Ln�
→ e−Q0(z)/2−Q0(w)/2L(z, w) = K (z, w).

The reproducing property
∫ | Kn�

(z, w) | 2dA(w) = Kn�
(z, z) means that

∫ ∣∣ En�
(z, w)Ln�

(z, w)
∣∣ 2 dA(w) = En�

(z, z)Ln�
(z, z).

Letting � → ∞, we obtain the mass-one inequality (2.5) by Fatou’s lemma.
There remains to prove that Ln is the reproducing kernel for the spaceHn . For this,

we write Ln,w(z) = Ln(z, w) and note that for an element f = q · e−Hn/2 ofHn , we
have

〈 f, Ln,w〉L2(μ̃n) =
∫

C

q(z) e−Hn(z)/2 L̄n(z, w) e−Q0(z)−Q1,n(z) dA(z)

= e−Hn(w)/2
∫

C

q(z) k̄n(z, w) e−nQ(rn z) dA(z).

Noting that kn is the reproducing kernel for the space P̃n of polynomials of degree at
most n − 1 normed by ‖ p ‖ 2 = ∫

C
| p(z) | 2 e−nQ(rn z) dA(z), we now see that

〈 f, Ln,w〉L2(μ̃n) = e−Hn(w)/2q(w) = f (w).

The proof of the lemma is complete. ��

2.3 The Positivity Theorem

Letμ0 be the measure dμ0 = e−Q0 dA, and define L0(z, w) to be the Bergman kernel
for the Bergman space L2

a(μ0). Let L = lim Ln�
be a limiting holomorphic kernel at

0.
Recall that the kernel Ln is the reproducing kernel for a certain subspace Hn of

L2
a(μ̃n), where μ̃n → μ0 in the sense that the densities converge uniformly on compact

sets, as n → ∞. See Lemma 2.2.
For L = lim Ln�

, the assignment 〈Lz, Lw〉∗ = L(w, z) defines a positive semi-
definite inner product on the linear span M of the Lz’s. In fact, the inner product is
either trivial (L(z, z) = 0 for all z), or else it is positive definite: this holds by the
zero-one law in Theorem 1.5, which will be proved in the next section.
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By Fatou’s lemma, we now see that, for all choices of points z j and scalars α j ,

∥∥∥∥∥∥

N∑

j=1

α j Lz j

∥∥∥∥∥∥

2

L2(μ0)

≤ lim inf
�→∞

N∑

i, j=1

αi ᾱ j

∫

C

Ln�
(w, zi )L̄n�

(w, z j ) dμ̃n�
(w)

= lim inf
�→∞

N∑

i, j=1

αi ᾱ j Ln�
(zi , z j ) =

N∑

i, j=1

αi ᾱ j L(zi , z j )

=
∥∥∥∥∥∥

N∑

j=1

α j Lz j

∥∥∥∥∥∥

2

∗
.

This shows that M is contained in L2(μ0) and that the inclusion I : M → L2(μ0)

is a contraction. Hence the completion H∗ of M can be regarded as a contractively
embedded subspace of L2

a(μ0).
Since the space L2

a(μ0) has reproducing kernel L0(z, w), it follows from a theorem
of Aronszajn ([8, p. 355]) that the difference L0 − L is a positive matrix. The proof
of Theorem 1.7 is complete. ��

3 Ward’s Equation and the Zero-One Law

3.1 Ward’s Equation

Given a limiting kernel K in Lemma 2.2, we recall the definitions

R(z) = K (z, z), B(z, w) = | K (z, w) | 2
K (z, z)

, C(z) =
∫

C

B(z, w)

z − w
dA(w).

The goal of this section is to prove Theorem 1.5, which we here restate in the
following form (the case τ0 = 1).

Lemma 3.1 If R does not vanish identically, then R > 0 everywhere and we have

∂̄C(z) = R(z) − �Q0(z) − � log R(z).

For the proof of Lemma 3.1, we recall the setting of Ward’s identity from [4].
For a test function ψ ∈ C∞

0 (C), we define a function W +
n [ψ] of n variables by

W +
n [ψ] = In[ψ] − I In[ψ] + I I In[ψ],
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where

In[ψ](ζ ) = 1

2

n∑

j �=k

ψ(ζ j ) − ψ(ζk)

ζ j − ζk
, I In[ψ](ζ ) = n

n∑

j=1

∂ Q(ζ j ) · ψ(ζ j ), and

I I In[ψ](ζ ) =
n∑

j=1

∂ψ(ζ j ) for ζ = (ζ1, · · · , ζn) ∈ C
n .

Wenow regard ζ as picked randomlywith respect to theBoltzmann–Gibbs distribution
(1.1). W +

n [ψ] is then a random variable; the Ward identity proved in [4, Section 4.1]
states that its expectation vanishes:

EnW +
n [ψ] = 0. (3.1)

We shall now rescale in Ward’s identity about 0 at the microscopic scale rn =
n−1/2k , given that the basic decomposition Q = Q0 + ReH + Q1 in (1.6) holds. (We
do not need to assume that 0 is in the bulk at this stage.)

To facilitate the calculations, it is convenient to recall a simple algebraic fact (see,
e.g., [26]): if f is a function of p complex variables, and if f (ζ1, . . . , ζp) is regarded
as a random variable on the sample space {ζ j }n

1 with respect to the Boltzmann–Gibbs
law, then the expectation is

En
[

f (ζ1, . . . , ζp)
] = (n − p)!

n!
∫

Cp
f · Rn,p dVp,

where dVp(ζ1, . . . , ζp) = dA(ζ1) · · · dA(ζp).
We rescale about 0 via z = r−1

n ζ , w = r−1
n η, recalling that the p-point functions

transform as densities. We recall that Rn,p(z) = r 2p
n Rn,p(ζ ) denotes the rescaled

p-point function and use the abbreviation Rn = Rn,1 for the one-point function. We
also write

Bn(z, w) = Rn(z)Rn(w) − Rn,2(z, w)

Rn(z)
= | Kn(z, w) | 2

Rn(z)
, (3.2)

Cn(z) =
∫

Bn(z, w)

z − w
dA(w). (3.3)

Lemma 3.2 We have that

∂̄Cn(z) = Rn(z) − �Q0(z) − � log Rn(z) + o(1),

where o(1) → 0 uniformly on compact subsets of C as n → ∞.
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Proof We fix a test function ψ ∈ C∞
0 (C) and let ψn(ζ ) = ψ(r−1

n ζ ). The change of
variables z = r−1

n ζ and w = r−1
n η gives that

En In[ψn] =
∫

C

ψn(ζ ) d(ζ )

∫

C

Rn,2(ζ, η)

ζ − η
dA(η)

= r−1
n

∫

C

ψ(z) dA(z)
∫

C

Rn,2(z, w)

z − w
dA(w)

and

En I In[ψn] = n
∫

C

∂ Q(ζ ) ψn(ζ )Rn,1(ζ ) dA(ζ )

= n
∫

C

∂ Q(rnz) ψ(z) Rn,1(z) dA(z).

Likewise, changing variables and integrating by parts, we obtain

En I I In[ψn] =
∫

C

∂ψn(ζ )Rn,1(ζ ) dA(ζ ) = r−1
n

∫

C

∂ψ(z) Rn,1(z) dA(z)

= −r−1
n

∫

C

ψ(z) ∂ Rn,1(z) dA(z).

Hence, by the Ward identity in (3.1), we have

∫

C

ψ(z) dA(z)
∫

C

Rn,2(z, w)

z − w
dA(w)

= n rn

∫

C

∂ Q(rnz) ψ(z) Rn,1(z) dA(z) +
∫

C

ψ(z) ∂ Rn,1(z) dA(z).

Since ψ is an arbitrary test function, we have in the sense of distributions,

∫

C

Rn,2(z, w)

z − w
dA(w) = nrn∂ Q(rnz) Rn,1(z) + ∂ Rn,1(z).

Dividing through by Rn,1(z) and using the fact that

Rn,2(z, w) = Rn,1(z)
(
Rn,1(w) − Bn(z, w)

)
,

we obtain
∫

C

Rn,1(w)

z − w
dA(w) −

∫

C

Bn(z, w)

z − w
dA(w) = nrn∂ Q(rnz) + ∂ log Rn,1(z).

Differentiating with respect to z̄, we get

Rn,1(z) − ∂̄Cn(z) = nr 2
n �Q(rnz) + � log Rn,1(z).
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Since �Q(rnz) = r 2(k−1)
n �Q0(z) + O(r 2k−1

n ) uniformly on compact subsets of C
as n → ∞ and rn = n−1/2k , we obtain

∂̄Cn(z) = Rn,1(z) − �Q0(z) − � log Rn,1(z) + o(1),

where o(1) → 0 uniformly on compact subsets of C as n → ∞. ��

3.2 The Proof of Theorem 1.5

We will need a few lemmas.

Lemma 3.3 If R(z0) = 0, then there is a real analytic function R̃ such that

R(z) = | z − z0 | 2 R̃(z).

If R does not vanish identically, then all zeros of R are isolated.

Proof The assumption gives that the holomorphic kernel L corresponding to R sat-
isfies L(z0, z0) = 0. Hence

∫
e−Q0(w) | L(z0, w) | 2dA(w) ≤ 0 by the mass-one

inequality (2.5). Thus L(z0, w) = 0 for all w ∈ C. Since L is Hermitian-entire,
we can thus write

L(z, w) = (z − z0) (w − z0)
∗ L̃(z, w)

for someHermitian-entire function L̃ .Wenowhave R(z) = | z − z0 | 2 L̃(z, z)e−Q0(z).
For the second statement, we assume that R does not vanish identically and there

exists a zero z0 of R which is not isolated. Then, we can take a sequence {z j }∞1 of
distinct zeros of R which converges to z0, whence by the above argument, for each j
we obtain L(z j , w) = 0 for all w ∈ C. If we fix w, then L(z, w) = 0 for all z ∈ C

since L(z, w) is holomorphic in z. Hence L = 0 identically. ��

Lemma 3.4 L(z, w) is a positive matrix and z �→ L(z, z) is logarithmically subhar-
monic.

Proof It is clear that L is a positive matrix. Now write Lz(w) := L(w, z) and define
a semi-definite inner product by 〈Lz, Lw〉∗ := L(w, z) on the linear span of the
functions Lz for z ∈ C. The completion of this span forms a (perhaps semi-normed)
Hilbert spaceH∗, and L is a reproducing kernel of the space. Now when L(z, z) > 0,

�z log L(z, z) = L(z, z)�L(z, z) − ∂z L(z, z) ∂̄z L(z, z)

L(z, z)2
. (3.4)

Since L(z, w) is Hermitian-entire, we have ∂̄z Lz ∈ H∗, 〈∂̄z Lz, Lz〉∗ = ∂̄z L(z, z), and
〈∂̄z Lz, ∂̄z Lz〉∗ = �L(z, z). Hence, the numerator of (3.4) can be written as

123



Constr Approx

‖ Lz ‖ 2∗ · ‖ ∂̄Lz ‖ 2∗ − ∣∣ 〈∂̄z Lz, Lz〉∗
∣∣ 2 ,

which is nonnegative by the Cauchy–Schwarz inequality.
At points where L(z, z) = 0, log L(z, z) satisfies the sub-mean value property since

log L(z, z) = −∞. Hence the function log L(z, z) is subharmonic on C. ��
Lemma 3.5 If R(z0) = 0 and R(z) = | z − z0 | 2 R̃(z), then �Q0 + � log R̃ ≥ 0 in
a neighborhood of z0.

Proof We choose a small disc D = D(z0, ε) and consider the function

S(z) = log
(
e Q0(z) R̃(z)

)
.

Observing that �z log L(z, z) = �Q0(z) + � log R̃(z) + δz0 in the sense of distri-
butions, Lemma 3.4 gives us that �S ≥ 0 in the sense of distributions on D\{z0}. If
R̃(z0) > 0, we extend S analytically to z0. On the other hand, if R̃(z0) = 0, we define
S(z0) = −∞. In both cases, the extended function S is subharmonic on D. ��

We now turn to the left-hand side in the rescaled version of Ward’s identity, namely
the function ∂̄Cn , where Cn is the Cauchy transform of Bn (see (3.3)).

Lemma 3.6 Suppose that R = lim Rn�
is a limiting 1-point function that does not van-

ish identically. Let Z be the set of isolated zeros of R, and let B(z, w) = lim Bn�
(z, w)

be the corresponding Berezin kernel for z /∈ Z. Then Cn�
→ C locally uniformly on

the complement Zc = C \ Z as � → ∞, where the function

C(z) =
∫

B(z, w)

z − w
dA(w)

is bounded on Zc ∩ V for each compact subset V of C.

Proof Wehave that cn�
Kn�

→ K locally uniformly onC2, where K (z, z) = R(z) > 0
when z /∈ Z . Hence, for fixed ε with 0 < ε < 1, we can choose N such that if � ≥ N ,
then

∣∣ Bn�
(z, w) − B(z, w)

∣∣ < ε 2

for all z, wwith | z | ≤ 1/ε, | w | ≤ 2/ε, and dist(z, Z) ≥ ε. Then, for z with | z | ≤ 1/ε
and dist(z, Z) ≥ ε,

∣∣ Cn�
(z) − C(z)

∣∣ ≤
(∫

| z−w |<1/ε
+

∫

| z−w |>1/ε

) ∣∣∣∣
Bn�

(z, w) − B(z, w)

z − w

∣∣∣∣ dA(w)

≤ ε 2
∫

| z−w |<1/ε

1

| z − w |dA(w)

+ ε

∫ ∣∣ Bn�
(z, w) − B(z, w)

∣∣ dA(w)

≤ 4ε.
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Here, we have used the mass-one inequality for the third inequality. Thus Cn�
→ C

uniformly on compact subsets of Zc.
Nowfix a compact subset V ofC. Then, for all z, wwith z ∈ V \Z and dist(w, V ) ≤

1,

Bn�
(z, w) =

∣∣ Kn�
(z, w)

∣∣ 2

Kn�
(z, z)

≤ Kn�
(w,w) ≤ M

for some M = MV that depends only on V by Lemma 2.1. Thus, for z ∈ V \ Z ,

∣∣Cn�

∣∣ ≤
(∫

| z−w |<1
+

∫

| z−w |>1

) ∣∣∣∣
Bn�

(z, w)

z − w

∣∣∣∣ dA(w)

≤ M
∫

| z−w |<1

1

| z − w |dA(w) +
∫

Bn�
(z, w)dA(w) ≤ 2M + 1.

Hence we obtain | C(z) | ≤ 2M + 1 for z ∈ V \ Z . ��

Lemma 3.7 If R does not vanish identically, the Ward’s equation

∂̄C = R − �Q0 − � log R

holds in the sense of distributions.

Proof The preceding lemmas show that

∂̄Cn = Rn − �Q0 − � log Rn + o(1) (3.5)

and that a subsequence Cn�
converges to C boundedly and locally uniformly onC\ Z .

Since Z ∩ V is a finite set for each compact set V , it follows that Cn�
→ C in the

sense of distributions, and hence ∂̄Cn�
→ ∂̄C . By Ward’s equation and the locally

uniform convergence Rn�
→ R, it then follows that� log Rn�

→ � log R in the sense
of distributions. We can thus pass to the limit as n� → ∞ in the rescaledWard identity
(3.5). ��

Proof of Theorem 1.5 We follow the strategy in [4, Theorem 4.8]. Suppose that
R(z0) = 0. We must prove that R = 0 identically.

Let D be a small disk centered at z0, and write χ = χD for the characteristic
function. Also write R(z) = | z − z0 | 2 R̃(z).

Consider the measures μ = χ · (�Q0 + � log R) and ν = χ · (�Q0 + � log R̃).
By lemmas 3.4 and 3.5, these measures are positive, and μ = δz0 + ν. Write Cμ(z) =∫
C

1
z−w

dμ(w) for the Cauchy transform of μ. Clearly,

Cμ(z) = 1

z − z0
+ Cν(z), z ∈ D.
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Also ∂̄Cν = ν ≥ 0. When z ∈ D, the right-hand side in Ward’s equation equals
R(z) − �(Q0 + log R)(z) = R(z) − ∂̄Cμ(z). If C(z) = ∫ B(z,w)

z−w
dA(w), we have,

by Ward’s equation, that

∂̄(C + Cμ)(z) = R(z).

Hence, by Weyl’s lemma, C(z) = −1/(z − z0) − Cν(z) + v(z), where v is smooth
near z0. If Cμ(z)were bounded as z → z0, then the measure μ = ν + δz0 would place
no mass at {z0}, so ν = −δz0 + ρ, where ρ({z0}) = 0. This contradicts that ν ≥ 0.
The contradiction shows that | C(z) | → ∞ as z → z0. This in turn contradicts that
C is bounded (Lemma 3.6), and hence R(z0) = 0 is impossible. Hence � log R is a
smooth function on C. Applying Weyl’s lemma to the distributional Ward equation
∂̄C = R −�Q0−� log R now shows that C(z) is smooth and hence that the equation
holds pointwise on C. ��

4 Universality Results

In this section, we prove Theorems 1.3 and 1.4. The proof of Theorem 1.4 relies on
certain apriori estimates, whose proofs are postponed to Sect. 6.

4.1 Homogeneous Singularities

Assume that Q has a homogeneous singularity of type 2k − 2 at the origin, i.e., that
the canonical decomposition is of the form Q = Q0 + Re H, H = c ζ 2k , where
Q0 is positively homogeneous of degree 2k. As always, we write μ0 for the measure
dμ0 = e−Q0 dA.

We now recall the kernel Ln (defined in (2.3)):

Ln(z, w) = kn(z, w)e−Hn(z)/2−H̄n(w)/2, (Hn(z) = nH(rnz), rn = n−1/2k).

In the present case, Ln(z, w) = kn(z, w)e−c z 2k/2−c̄ w̄ 2k/2. By Lemma 2.2, Ln is the
reproducing kernel for the space

Hn = { f (z) = q(z) · e−c z 2k/2; q ∈ Pol(n)}

regarded as a subspace of L2(μ0). (This is because μ̃n = μ0 for the measure μ̃n in
(2.4).)

Since the spaces Hn are increasing, Hn ⊂ Hn+1, where the inclusions are iso-
metric, it follows that a unique limiting holomorphic kernel L = lim Ln exists. By
Theorem 1.7, the kernel L is the reproducing kernel for a contractively embedded sub-
spaceH∗ of L2

a(μ0), whichmust contain the dense subsetU = ⋃Hn . Furthermore, by

the reproducing property of Ln , we have for each element f (z) = q(z) · e−cz2k/2 ∈ U
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that 〈 f, Ln,z〉L2(μ0)
= f (z), whenever n > degree q. It follows that

f (z) = lim
n→∞〈 f, Ln,z〉L2(μ0)

= 〈 f, Lz〉L2(μ0)
, f ∈ U.

Since U is dense in L2
a(μ0), L must equal to the reproducing kernel L0 of L2

a(μ0).
The proof of Theorem 1.3 is complete. ��

4.2 Rotational Symmetry

Referring to the canonical decomposition Q = Q0+ Re H +Q1, we now suppose that
Q0(z) = Q0(| z |), and we fix a rotationally symmetric limiting holomorphic kernel

L(z, w) = E(zw̄).

Writing E(z) = ∑∞
0 a j z j , the mass-one inequality

∫
e−Q0(w) | L(z, w) | 2 dA(w) ≤ L(z, z)

is seen to be equivalent to that

∑ ∣∣ a j
∣∣ 2 | z | 2 j ‖w j ‖ 2

L2(μ0)
≤

∑
a j | z | 2 j . (4.1)

To use Ward’s equation, we first compute the Cauchy transform C(z) as follows:

C(z) = 1

L(z, z)

∫

C

e−Q0(w)

z − w
| L(z, w) | 2 dA(w)

= 1

E(| z | 2)
∑

j,k

a j āk z j z̄ k
∫

C

e−Q0(w)

z − w
w̄ jw k dA(w)

= 1

E(| z | 2)
∑

j,k

a j āk z j z̄ k 1

π

∫ ∞

0
e−Q0(r)r j+k dr

∫ 2π

0

e i(k− j)θ

z/r − e iθ
dθ.

However, as is shown in [3], we have that

1

2π

∫ 2π

0

e i(k− j)θ

z/r − e iθ
dθ =

⎧
⎪⎨

⎪⎩

−(z/r) k− j−1 if | z | < r, k − j ≥ 1,

(z/r) k− j−1 if | z | > r, k − j ≤ 0,

0 otherwise.
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Thus

C(z) = 2

E(| z | 2)
∑

j,k

a j āk z j z̄ k

(∫ | z |

0
e−Q0(r)r j+k

( z

r

)k− j−1
χ(k ≤ j) dr

−
∫ ∞

| z |
e−Q0(r)r j+k

( z

r

)k− j−1
χ(k ≥ j + 1) dr

)

= A(z) − B(z),

where

A(z) = 2

E(| z | 2)
∑

j,k

a j āk z j z̄ k
∫ | z |

0
e−Q0(r)r j+k

( z

r

) k− j−1
dr,

B(z) = 2

E(| z | 2)
∑

j,k

a j āk z j z̄ k
∫ ∞

0
e−Q0(r)r j+k

( z

r

) k− j−1
χ(k ≥ j + 1) dr.

The term A(z) can be written as

A(z) = 1

zE(| z | 2)
∑

j,k

a j āk | z | 2k
∫ | z | 2

0
e−Q0(

√
r)r j dr

= 1

z

∫ | z | 2

0
e−Q0(

√
r)E(r) dr,

which gives

∂̄ A(z) = e−Q0(z)E(| z | 2) = R(z).

The term B(z) is computed as follows:

B(z) = 1

E(| z | 2)
∞∑

k=1

āk z k−1 z̄ k
k−1∑

j=0

a j

∫ ∞

0
e−Q0(

√
r)r j dr

= 1

E(| z | 2)
∞∑

k=1

āk z k−1 z̄ k
k−1∑

j=0

a j‖ z j ‖ 2
Q0

.

Noting that

∂z log L(z, z) = ∂z E(| z | 2)
E(| z | 2) = 1

E(| z | 2)
∞∑

k=1

k āk z k−1 z̄ k,
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we infer that Ward’s equation

∂̄ A − ∂̄ B = R − �z log L(z, z)

is equivalent to that ∂̄(B − ∂z log L(z, z)) = 0. This in turn, is equivalent to that the
function

1

E(| z | 2)
∞∑

k=1

āk z k−1 z̄ k

⎛

⎝k −
k−1∑

j=0

a j‖ z j ‖ 2
L2(μ0)

⎞

⎠

be entire. It is easy to check that this is the case if and only if all coefficients in the
sum vanish, that is, if and only if for each k ≥ 1, we have that

ak = 0 or
k−1∑

j=0

a j‖ z j ‖ 2
L2(μ0)

= k. (4.2)

We now apply the growth estimate in Theorem 1.6, part (ii), which says that

E(| z | 2) = �Q0(z) e
Q0(z) (1 + o(1)) as z → ∞. (4.3)

We claim that this implies the second alternative in (4.2).
Indeed, (4.3) is clearly not satisfied if E is constant. Next note that the mass-one

inequality (4.1) and the zero-one law (Theorem1.5) imply that 0 < a0 ≤ 1/‖ 1 ‖ 2
L2(μ0)

.
Since E(z) is not a polynomial by (4.3), for any k there exists N ≥ k such that aN �= 0.
By (4.2), we obtain that if aN �= 0 but a j = 0 for all j with 1 ≤ j ≤ N −1, then N = 1
and a0 = 1/‖ 1 ‖ 2

L2(μ0)
. By a simple induction, we then have ak = 1/‖ z k ‖ 2

L2(μ0)
for

all k ≥ 0. Thus, we have

E(z) =
∞∑

j=0

1

‖ z j ‖ 2
L2(μ0)

z j .

Since the polynomial φ j (z) = z j/‖ z j ‖L2(μ0)
is the j :th orthonormal polynomial

with respect to the measure μ0, we have

L(z, w) = E(zw̄) =
∞∑

j=0

φ j (z)φ̄ j (w) = L0(z, w),

where L0 is the Bergman kernel for the space L2
a(μ0). The proof is complete. ��

5 Asymptotics for L0(z, z)

In this section, we prove part (i) of Theorem 1.6.
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To this end, let A0(z, w) be the Hermitian polynomial such that A0(z, z) = Q0(z),
and write

L�
0(z, w) = [

∂1∂̄2A0
]
(z, w) · e A0(z,w).

We write L�
z(w) for L�

0(w, z) and, for suitable functions u,

π�u(z) = 〈u, L�
z〉L2(μ0)

=
∫

C

uL̄�
ze

−Q0 dA.

Below, we fix a z with |z| large enough; we must estimate L0(z, z). We also fix a
number δ0 = δ0(z) > 0 and write χz for a fixed C∞-smooth test-function with
χz(w) = 1 when | w − z | ≤ δ0 and χz(w) = 0 when | w − z | ≥ 2δ0.

We will use the following estimate.

Lemma 5.1 If |1−w/z| is sufficiently small, then 2Re A0(z, w) ≤ Q0(z)+ Q0(w)−
c|z|2k−2|w − z|2, where c is a positive constant.

Proof Wewrite h = w−z. By Taylor’s formula, A0(w, z) = Q0(z)+∑2k
1

∂ j Q0(z)
j ! h j .

Similarly, A0(w,w) = Q0(z) + ∑
i+ j≥1

∂ i ∂̄ j Q0(z)
i ! j ! hi h̄ j . Hence

2Re A0(z, w) − Q0(z) − Q0(w) + �Q0(z)|h|2 = −
∑

i, j≥1,i+ j≥3

∂ i ∂̄ j Q0(z)

i ! j ! hi h̄ j .

(5.1)
However, since Q0 is homogeneous of degree 2k, the derivative ∂ i ∂̄ j Q0 is homoge-
neous of degree 2k − i − j . Hence

∣∣∣∂ i ∂̄ j Q0(z)
∣∣∣ |w − z|i+ j ≤ C |z|2k−2|w − z|2|1 − w/z|i+ j−2.

Thus, if i + j ≥ 3 and |1 − w/z| is sufficiently small, then the left-hand side in (5.1)
is dominated by an arbitrarily small multiple of |z|2k−2|z − w|2. On the other hand,
by homogeneity and positive definiteness of �Q0, we have that �Q0(z)|z − w|2 ≥
c′|z|2k−2|z − w|2, where c′ is a positive constant. The lemma thus follows with any
positive constant c < c′ ��

As always, we write dμ0 = e−Q0 dA; L2
a(μ0) denotes the associated Bergman

space of entire functions, and L0 is the Bergman kernel of that space.

Lemma 5.2 Let |z| ≥ 1 and δ0 be a positive number with δ0/|z| sufficiently small.
Then there is a constant C = C(δ0) such that, for all functions u ∈ L2

a(μ0),

∣∣ u(z) − π�[χzu](z) ∣∣ ≤ C‖ u ‖L2(μ0)
(δ−1

0 + 1)e Q0(z)/2.
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Proof Note that

π�[χzu](z) =
∫

C

χz(w)u(w)
[
∂1∂̄2A0

]
(z, w) · e A0(z,w)−A0(w,w) dA(w)

= −
∫

C

u(w)χz(w)F(z, w)

w − z
∂̄w

[
e A0(z,w)−A0(w,w)

]
dA(w), (5.2)

where

F(z, w) = (w − z)
[
∂1∂̄2A0

]
(z, w)

∂̄2A0(w,w) − ∂̄2A0(z, w)
. (5.3)

Now fixw. The denominator P(z) = ∂̄2A0(w,w)− ∂̄2A0(z, w) is by Taylor’s formula
equal to the polynomial

−�Q0(w) · (z − w) − ∂�Q0(w)

2
· (z − w) 2 − · · · − ∂k−1�Q0(w)

k! · (z − w) k .

Here the derivative ∂ j�Q0(w) = | w | 2k−2− j ∂ j�Q0(w/| w |) is positively homoge-
neous of degree 2k − 2 − j . Set c(w) = �Q0(w/| w |). We then have that

P(z) = c(w)| w | 2k−2 · (w − z) + O( (w − z) 2 ), (z → w).

Since also ∂1∂̄2A0(z, w) = c(z) | z | 2k−2 (1 + O(w − z)), we have by (5.3),

F(z, w) = 1 + O(w − z), (w → z). (5.4)

By the form of F it is also clear that

∂̄2F(z, w) = O(w − z), (w → z). (5.5)

An integration by parts in (5.2) gives π�[χzu](z) = u(z) + ε1 + ε2, where

ε1 =
∫

u(w)∂̄χz(w)F(z, w)

w − z
e A0(z,w)−A0(w,w) dA(w),

ε2 =
∫

u(w)χz(w)∂̄2F(z, w)

w − z
e A0(z,w)−A0(w,w) dA(w).

Inserting the estimates (5.4) and (5.5), using also that ∂̄χz(w) = 0 when | w−z | ≤ δ0,
we find that

| ε1 | ≤ Cδ−1
0

∫
| u(w) | ∣∣ ∂̄χz(w)

∣∣ eRe A0(z,w)−Q0(w) dA(w),

| ε2 | ≤ C
∫

χz(w) | u(w)| eRe A0(z,w)−Q0(w) dA(w).
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To estimate ε1, we use Lemma 5.1 to get

eRe A0(z,w)−Q0(w)/2 ≤ Ce Q0(z)/2−c|z−w|2 . (5.6)

This gives

| ε1 | e−Q0(z)/2 ≤ Cδ−1
0

∫
| u(w) | | ∂̄χz(w) |e−Q0(w)/2 dA(w)

≤ Cδ−1
0 ‖ u ‖L2(μ0)

‖ ∂̄χz ‖L2 ≤ C ′‖ u ‖L2(μ0)
.

To estimate ε2, we note that (again by (5.6))

| ε2 | e−Q0(z)/2 ≤ C‖ u ‖L2(μ0)

(∫

| w−z |≤2δ0
e−c|z−w|2dA(w)

)1/2

≤ C‖ u ‖L2(μ0)
.

The proof is complete. ��

Let π0 : L2(μ0) → L2
a(μ0) be the Bergman projection, π0[ f ](z) = 〈 f, Lz〉L2(μ0)

,
where we write Lz(w) for L0(w, z). Noting that

(π�[χz Lz](z)) ∗ = 〈χz Lz, L�
z〉 ∗ = 〈χz L�

z, Lz〉 = π0[χz L�
z](z),

we see that

∣∣ Lz(z) − π0[χz L�
z](z)

∣∣ = ∣∣ Lz(z) − π�[χz Lz](z)
∣∣ .

If we now choose u = Lz in Lemma 5.2 and recall that ‖ Lz ‖ 2
L2(μ0)

= L0(z, z), we
obtain the estimate

∣∣ L0(z, z) − π0[χz L�
z](z)

∣∣ ≤ C
√

L0(z, z) · e Q0(z)/2, |z| ≥ 1. (5.7)

Lemma 5.3 There is a constant C such that for all |z| ≥ 1 and all δ0 = δ0(z) > 0
with δ0/|z| small enough,

∣∣∣�Q0(z) e
Q0(z) − π0

[
χz L�

z

]
(z)

∣∣∣ ≤ C | z | k−1e Q0(z).

Proof Consider the function u0 = χz L�
z − π0[χz L�

z]. This is the norm-minimal solu-
tion in L2(μ0) to the problem ∂̄u = (∂̄χz) · L�

z .
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Since Q0 is strictly subharmonic on the support of χz , we can apply the standard
Hörmander estimate (e.g., [19, p. 250]) to obtain

‖ u ‖ 2
L2(μ0)

≤
∫

C

∣∣ ∂̄χz
∣∣ 2 ∣∣ L�

z

∣∣ 2 e−Q0

�Q0
dA

≤ C | z |−(2k−2) ‖ ∂̄χz ‖ 2
L2

sup
δ0≤|w−z|≤2δ0

∣∣ [∂1∂̄2A0](z, w)
∣∣ 2 e2Re A0(z,w)−A0(w,w),

where we used homogeneity of �Q0.
By Taylor’s formula and the estimate (5.6), we have when δ0 ≤ | w − z | ≤ 2δ0,

∣∣ [∂1∂̄2A0](z, w)
∣∣ 2 e 2Re A0(z,w)−A0(w,w) ≤ C�Q0(z)

2e Q0(z)−2c|z|2k−2|z−w|2 .

By the homogeneity of �Q0, we thus obtain the estimate

‖ u ‖L2(μ0)
≤ C | z | k−1e Q0(z)/2−c′δ20 |z|2k−2

. (5.8)

We now pick another (small) number δ > 0 and invoke the following pointwise-L2

estimate (see, e.g., [4, Lemma 3.1] or the proof of the inequality (2.2)):

| u(z) | 2 e−Q0(z) ≤ Cec′′δ�Q0(z)|z|δ−2
∫

D(z,δ)
| u(w) | 2 e−Q0(w) dA(w). (5.9)

Combining with (5.8), this gives

| u(z) | 2 e−Q0(z) ≤ Cδ−2e−c′δ20 |z|2k−2+c′′δ|z|2k−1 | z | 2k−2e Q0(z).

Choosing δ0 a small multiple of |z|1/2 and then δ small enough, we insure that the
right-hand side is dominated by C |z|2k−2eQ0(z), as desired. ��
Proof of Part (i) of Theorem 1.6 By the estimate (5.7) and Lemma 5.3, we have

∣∣∣�Q0(z) e
Q0(z) − L0(z, z)

∣∣∣ ≤ C1

√
L0(z, z)e Q0(z)/2 + C2| z | k−1e Q0(z).

Writing R0(z) = L0(z, z)e−Q0(z), this becomes

∣∣∣ | z | 2k−2c(z) − R0(z)
∣∣∣ ≤ C1

√
R0(z) + C2| z | k−1, c(z) = �Q0(z/| z |). (5.10)

We must prove that the left-hand side in (5.10) is dominated by M | z | 1−k �Q0(z) for
all large | z |, where M is a suitable constant. If this is false, there are two possibilities.
If R0(z) ≤ (1 − M | z | 1−k)�Q0(z) for arbitrarily large | z |, then (5.10) implies

M | z | k−1 c(z) ≤ C1

√
R0(z) + C2| z | k−1 ≤ (C ′

1 + C2)| z | k−1,
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and we reach a contradiction for large enough M .
In the remaining case, we have R0(z) ≥ (1+ M | z | 1−k)�Q0(z). Then (5.10) gives

the estimate R0(z) ≥ cM 2| z | 2k−2 for some c > 0. Since �Q0(z) ≤ c′| z | 2k−2 for
some c′ > 0, we obtain

R0(z) − �Q0(z) ≥ (cM 2 − c′) | z | 2k−2 .

Choosing M large enough, we obtain R0(z) ≥ C3M | z | 4k−4 by (5.10) again. Repeat-
ing the above argument gives R0(z) ≥ C p M | z | 2p for all sufficiently large | z | for
some constant C p > 0. On the other hand, we will show that

R0(z) ≤ C(1 + | z | 4k−2) (5.11)

for all z, which will give the desired contradiction. To see this, note that for functions
u ∈ L2

a(μ0), the estimate (5.9) gives

| u(z) |2 e−Q0(z) ≤ Cδ−2eC| z | 2k−1δ‖u‖2L2(μ0)
, (|z| ≥ 1, 0 < δ < 1).

Taking δ = | z |1−2k , we obtain |u(z)|2 ≤ C | z |4k−2eQ0(z)‖u‖2
L2(μ0)

. Since

L0(z, z) = sup{ | u(z) | 2 ; u ∈ L2
a(μ0), ‖ u ‖L2(μ0)

≤ 1 },

we now obtain the estimate (5.11). ��

6 Apriori Estimates for the One-Point Function

In this section, we prove part (ii) of Theorem 1.6.
As before, we write Q = Q0 + Re H + Q1 for the canonical decomposition of Q

at 0, and we write μ0 for the measure dμ0 = e−Q0 dA. In this section, the assumption
that 0 is in the bulk of the droplet will become important.

Our arguments below essentially follow by adaptation of the previous section.
Fix a point ζ in a small neighborhood of 0 with | ζ | ≥ rn . We also fix a number

δ0 = δ0(ζ ) ≥ const. > 0 with δ0(ζ ) ·rn/|ζ | uniformly small, and a smooth functionψ

withψ = 1 in D(0, δ0) andψ = 0 outside D(0, 2δ0). We define a function χζ = χζ,n

by

χζ (ω) = ψ((ω − ζ )/rn).

Let A(η, ω) be aHermitian-analytic function in a neighborhood of (0, 0), satisfying
A(η, η) = Q(η). We shall essentially apply the definition of the approximating kernel
(denoted by L�

0 in the preceding section) with “A0” replaced by “n A.” We denote this

kernel by L�
n , viz.

L�
n(ζ, η) = n ∂1∂̄2A(ζ, η) · e n A(ζ,η).
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The corresponding “approximate projection” is defined on suitable functions u by

π�
nu(ζ ) = 〈u,L�

ζ 〉L2(μn), dμn = e−nQ dA,

where, for convenience, we write L�
ζ instead of L�

n,ζ .

Lemma 6.1 Suppose that u is holomorphic in a neighborhood of ζ and δ0(ζ )·rn/|ζ | ≤
ε0 (small enough). Then there is a constant C = C(ε0) such that, when rn ≤ | ζ | ≤
rn log n,

∣∣ u(ζ ) − π�
n [χζ u](ζ )

∣∣ ≤ C(1 + (δ0rn)
−1)‖ u ‖L2(μn)e

nQ(ζ )/2.

Proof It will be sufficient to indicate how the proof of Lemma 5.2 is modified in the
present setting. We start as earlier, by writing

π�
n [χζ f ](ζ ) = −

∫
u(ω)χζ (ω)F(ζ, ω)

ω − ζ
∂̄ω

[
e−n(A(ω,ω)−A(ζ,ω))

]
dA(ω),

where

F(ζ, ω) = (ω − ζ )∂1∂̄2A(ζ, ω)

∂̄2A(ω, ω) − ∂̄2A(ζ, ω)
.

Here, we may replace “A” by “A0” to within negligible terms, for the relevant ζ and
ω. More precisely, Taylor’s formula gives that

∂̄2A(ω, ω) − ∂̄2A(ζ, ω) = �Q0(ω)(1 + O(rn log n)) · (ω − ζ ) + O( (ω − ζ ) 2 ),

(6.1)

∂1∂̄2A(ζ, ω) = ∂1∂̄2A0(ζ, ω)(1 + O(rn log n)), (6.2)

when rn ≤ | ζ | ≤ rn log n and | ω − ζ | ≤ 2δ0rn .
From (6.1) and the form of F , we see (as in the proof of Lemma 5.2) that

F(ζ, ω) = 1 + O(ζ − ω), ∂̄2F(ζ, ω) = O(ω − ζ ). (6.3)

We continue to write π
�
nu(ζ ) = u(ζ ) + ε1 + ε2, where

ε1 =
∫

u(ω) · ∂̄χζ (ω) · F(ζ, ω)

ω − ζ
e−n[A(ω,ω)−A(ζ,ω)] dA(ω),

ε2 =
∫

u(ω) · χζ (ω) · ∂̄2F(ζ, ω)

ω − ζ
e−n(A(ω,ω)−A(ζ,ω)) dA(ω).

To estimate ε1 and ε2, we note that there is a positive constant c such that

e−n(Q0(ω)/2−Re A0(ζ,ω)) ≤ Ce nQ0(ζ )/2−cn|ζ |2k−2|ζ−ω|2 , | ω − ζ | ≤ 2δ0rn . (6.4)
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See Lemma 5.1.
Inserting the estimates in (6.3) and (6.4), using also that ∂̄χζ (w) = 0 when

| ζ − ω | ≤ δ0rn , we find that if |ζ | ≥ rn ,

| ε1 | e−nQ(ζ )/2 ≤ Cδ−1
0 r−1

n

∫
| u(ω) | | ∂̄χζ (ω) |e−nQ(ω)/2 dA(ω),

| ε2 | e−nQ(ζ )/2 ≤ C
∫

χζ (ω) | u(ω) | e−nQ(ω)/2e−cnr2k−2
n |ζ−ω|2 dA(ω).

Using the Cauchy–Schwarz inequality, we find now that

(| ε1 | + | ε2 |)e−nQ(ζ )/2 ≤ C(1 + δ−1
0 r−1

n )‖ u ‖L2(μn).

The proof is complete. ��
Choosing u(η) = kn(η, ζ ), where kn is the Bergman kernel for the subspace Pn of

L2(μn), we obtain the following estimate, valid when rn ≤ | ζ | ≤ rn log n:

∣∣∣kn(ζ, ζ ) − πn

[
χζL

�
ζ

]
(ζ )

∣∣∣ ≤ Cr−1
n

√
kn(ζ, ζ ) · e nQ(ζ )/2. (6.5)

Here πn : L2(μn) → Pn is the orthogonal projection, πnu(ζ ) = 〈u,kn,ζ 〉L2(μn). (Cf.
(5.7) for details on the derivation of equation (6.5) from Lemma 6.1.)

Lemma 6.2 For all ζ in the annulus rn ≤ | ζ | ≤ log n · rn, and for δ0(ζ ) · rn a small
enough multiple of |ζ |, we have the estimate

∣∣∣πn

[
χζL

�
ζ

]
(ζ ) − n�Q(ζ ) e nQ(ζ )

∣∣∣ ≤ C
√

nr−1
n | ζ | k−1e nQ(ζ ).

Proof Let u0 = χζL
�
ζ − πn

[
χζL

�
ζ

]
be the norm-minimal solution in L2(μn) to the

problem ∂̄u0 = ∂̄ f , where f = χζL
�
ζ . We will prove that the problem ∂̄u = ∂̄ f has

a solution u with u − f ∈ Pol(n) and

‖ u ‖L2(μn) ≤ Cn−1/2|ζ |−(k−1)
∥∥∥ ∂̄

[
χζL

�
ζ

] ∥∥∥
L2(μn)

. (6.6)

This is done by a standard device, which now we briefly recall.
Let Q̌ be the “obstacle function” pertaining to Q. Themain facts about this function

to be used here are the following (cf. [28] for details). The obstacle function can be
defined as Q̌ = γ − 2Uσ , where Uσ is the logarithmic potential of the equilibrium
measure and γ is a constant chosen so that Q̌ = Q on S. One has that Q̌ is harmonic
outside S, and that its gradient is Lipschitz continuous onC. Furthermore, Q̌(ω) grows
like 2 log | ω | + O(1) as ω → ∞.

We use the obstacle function to form the strictly subharmonic function φ(ω) =
Q̌(ω) + n−1 log(1 + | ω | 2), and we go on to define a measure μ′

n by dμ′
n(ω) =

e−nφ(ω) dA(ω). Write P ′
n for the subspace of L2(μ′

n) of holomorphic polynomials of
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degree at most n − 1, and let π ′
n be the corresponding orthogonal projection. Finally,

we write

v0 = f − π ′
n f.

Since φ is now strictly subharmonic, the standard Hörmander estimate can be
applied. It gives

‖ v0 ‖ 2
L2(μ′

n)
≤

∫

C

∣∣ ∂̄ f
∣∣ 2 e

−nφ

n�φ
dA.

Sinceχζ is supported in the disk D(ζ, 2δ0rn), and since�Q̌ = �Q = �Q0·(1+o(1))
there, we see that

‖ v0 ‖L2(μ′
n) ≤ Cn−1/2|ζ |−(k−1)

∥∥ ∂̄ f
∥∥

L2(μn)
.

Next we use the estimate nφ ≤ nQ +const.which holds by the growth assumption on
Q near infinity. This gives ‖ v0 ‖L2(μn) ≤ C‖ v0 ‖L2(μ′

n), and so we have shown (6.6)
with u = v0.

Sincenφ(ω) = (n+1) log | ω | 2+O(1) asω → ∞, we have that L2
a(μ′

n) = Pol(n).
Hence u = v0 solves, in addition to (6.6), the problem

∂̄u = ∂̄ f and u − f ∈ Pol(n).

Using the form of ∂̄ f = ∂̄χζ ·L�
ζ and the estimate (6.4), we find that for |ω − ζ | ≤

δ0rn ,

| ∂̄u(ω) | 2e−nQ(ω) ≤ C(n�Q0(ζ )) 2| ∂̄χζ (ω) | 2enQ(ζ )−2nc|ζ |2k−2 | ω−ζ | 2 .

By the homogeneity of �Q0 and the fact that ∂̄χζ = 0 when |ω − ζ | ≤ δ0rn , this
gives the estimate

‖ ∂̄ f ‖L2(μn) ≤ Cn | ζ | 2k−2 enQ(ζ )/2e−cn|ζ |2k−2(δ0rn)2 .

Applying (6.6), we now get

‖ u ‖L2(μn) ≤ C
√

n| ζ | k−1enQ(ζ )/2e−cn(δ0rn)2|ζ |2k−2
. (6.7)

We now pick a small constant δ (independent of n) and use the pointwise-L2 estimate

| u(ζ ) | 2 e−nQ(ζ ) ≤ C(rnδ)
−2e c′nrnδ|ζ |2k−1‖ u ‖ 2

nQ .

Choosing δ0rn as a small multiple of |ζ | and then δ small enough, we can now use
(6.7) to deduce that
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| u(ζ ) | e−nQ(ζ )/2 ≤ Cr−1
n

√
n|ζ |k−1enQ(ζ )/2,

finishing the proof. ��
Proof of Theorem 1.6, part (ii) Fix ε > 0 and take ζ with rn ≤ | ζ | ≤ log n · rn . By
the estimate (6.5) and Lemma 6.2, we have for all large n that

|Rn(ζ ) − n�Q0(ζ ) | ≤ C1r−1
n

√
Rn(ζ ) + C2r−k−1

n |ζ |k−1

for some constants C1, C2. Multiplying through by r 2
n and writing Rn(z) = r 2

n Rn(ζ ),
z = r−1

n ζ , we get

| Rn(z) − �Q0(z) | ≤ C1

√
Rn(z) + C2|z|k−1.

It follows that each limiting 1-point function R must satisfy

∣∣∣ R(z) − c(z) | z | 2k−2
∣∣∣ ≤ C1

√
R(z) + C2|z|k−1, |z| ≥ 1,

where c(z) = �Q0(z/| z |) > 0. The proof of part (i) of Theorem 1.6 shows that this
is only possible if R(z) = �Q0(z)(1 + O(z1−k)) as z → ∞. ��
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