190 research outputs found

    Segmented Leap-Ahead LFSR Architecture for Uniform Random Number Generator

    Get PDF
    Random numbers are widely used in various applications. In the majority of cases, a pseudo-random number generator is used since true random number generators are slow and they are barely suitable for the hardware implementation. In this paper, we present new architecture of URNG (uniform random number generator) employing Leap-Ahead LFSR architecture for hardware implementation. In particular, the proposed URNG consists of two more segmented Leap-Ahead LFSRs to overcome the drawback of the conventional URNG employing Leap-Ahead architecture, that is, the sharp decrease of a maximum period of the generated random numbers. Thus, the proposed URNG with segmented LFSR architecture can generate multiple bits random number in a cycle without the frequent diminishing of maximum period of the generated random numbers. We prove the efficiency of the proposed segmented LFSR-architecture through the mathematical analysis. The simulation results show that the proposed URNG employing segmented Leap-Ahead LFSR architecture can be increased 2.5 times of the maximum period of generated random numbers compared to the URNG using the conventional Leap-Ahead architecture

    Mouse genetics: Catalogue and scissors

    Get PDF
    Phenotypic analysis of gene-specific knockout (KO) mice has revolutionized our understanding of in vivo gene functions. As the use of mouse embryonic stem (ES) cells is inevitable for conventional gene targeting, the generation of knockout mice remains a very time-consuming and expensive process. To accelerate the large-scale production and phenotype analyses of KO mice, international efforts have organized global consortia such as the International Knockout Mouse Consortium (IKMC) and International Mouse Phenotype Consortium (IMPC), and they are persistently expanding the KO mouse catalogue that is publicly available for the researches studying specific genes of interests in vivo. However, new technologies, adopting zinc-finger nucleases (ZFNs) or Transcription Activator-like Effector (TALE) Nucleases (TALENs) to edit the mouse genome, are now emerging as valuable and effective shortcuts alternative for the conventional gene targeting using ES cells. Here, we introduce the recent achievement of IKMC, and evaluate the significance of ZFN/TALEN technology in mouse genetics. [BMB Reports 2012; 45(12): 686-692]

    Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance

    Get PDF
    BACKGROUND:The impact of human activities on the environmental resistome has been documented in many studies, but there remains the controversial question of whether the increased antibiotic resistance observed in anthropogenically impacted environments is just a result of contamination by resistant fecal microbes or is mediated by indigenous environmental organisms. Here, to determine exactly how anthropogenic influences shape the environmental resistome, we resolved the microbiome, resistome, and mobilome of the planktonic microbial communities along a single river, the Han, which spans a gradient of human activities. RESULTS:The bloom of antibiotic resistance genes (ARGs) was evident in the downstream regions and distinct successional dynamics of the river resistome occurred across the spatial continuum. We identified a number of widespread ARG sequences shared between the river, human gut, and pathogenic bacteria. These human-related ARGs were largely associated with mobile genetic elements rather than particular gut taxa and mainly responsible for anthropogenically driven bloom of the downstream river resistome. Furthermore, both sequence- and phenotype-based analyses revealed environmental relatives of clinically important proteobacteria as major carriers of these ARGs. CONCLUSIONS:Our results demonstrate a more nuanced view of the impact of anthropogenic activities on the river resistome: fecal contamination is present and allows the transmission of ARGs to the environmental resistome, but these mobile genes rather than resistant fecal bacteria proliferate in environmental relatives of their original hosts. Video abstract

    Gut taste receptor type 1 member 3 is an intrinsic regulator of Western diet-induced intestinal inflammation

    Get PDF
    Background Long-term intake of a Western diet (WD), characterized by a high-fat content and sugary drinks, is hypothesized to contribute to the development of inflammatory bowel disease (IBD). Despite the identified clinical association, the molecular mechanisms by which dietary changes contribute to IBD development remain unknown. Therefore, we examined the influence of long-term intake of a WD on intestinal inflammation and the mechanisms by which WD intake affects IBD development. Methods Mice fed normal diet or WD for 10weeks, and bowel inflammation was evaluated through pathohistological and infiltrated inflammatory cell assessments. To understand the role of intestinal taste receptor type 1 member 3 (TAS1R3) in WD-induced intestinal inflammation, cultured enteroendocrine cells harboring TAS1R3, subjected to RNA interference or antagonist treatment, and Tas1r3-deficient mice were used. RNA-sequencing, flow cytometry, 16S metagenomic sequencing, and bioinformatics analyses were performed to examine the involved mechanisms. To demonstrate their clinical relevance, intestinal biopsies from patients with IBD and mice with dextran sulfate sodium-induced colitis were analyzed. Results Our study revealed for the first time that intestinal TAS1R3 is a critical mediator of WD-induced intestinal inflammation. WD-fed mice showed marked TAS1R3 overexpression with hallmarks of serious bowel inflammation. Conversely, mice lacking TAS1R3 failed to exhibit inflammatory responses to WD. Mechanistically, intestinal transcriptome analysis revealed that Tas1r3 deficiency suppressed mTOR signaling, significantly increasing the expression of PPARγ (a major mucosal defense enhancer) and upregulating the expression of PPARγ target-gene (tight junction protein and antimicrobial peptide). The gut microbiota of Tas1r3-deficient mice showed expansion of butyrate-producing Clostridia. Moreover, an increased expression of host PPARγ-signaling pathway proteins was positively correlated with butyrate-producing microbes, suggesting that intestinal TAS1R3 regulates the relationship between host metabolism and gut microflora in response to dietary factors. In cultured intestinal cells, regulation of the TAS1R3–mTOR–PPARγ axis was critical for triggering an inflammatory response via proinflammatory cytokine production and secretion. Abnormal regulation of the axis was observed in patients with IBD. Conclusions Our findings suggest that the TAS1R3–mTOR–PPARγ axis in the gut links Western diet consumption with intestinal inflammation and is a potential therapeutic target for IBD.This work was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (Grant NRF-2021R1A2C3010280), and the Korea Mouse Phenotyping Project through the National Research Foundation of Korea funded by the Ministry of Science and ICT (Grant NRF-2013M3A9D5072550). The funding sources had no role in the design of the study, in the collection, analysis, and interpretation of data, or in the writing of the manuscrip

    Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis

    Get PDF
    Additional file 3 : Figure S2. HPLC analysis of milbemycins produced from S. avermitilis mutant strains and authentic standard milbemycins

    Synergistic Antimyeloma Activity of Dendritic Cells and Pomalidomide in a Murine Myeloma Model

    Get PDF
    We have previously shown that immunization with tumor antigen-loaded dendritic cells (DCs) and the immunomodulating drug, lenalidomide, synergistically potentiates the enhancing antitumor immunity in a myeloma mouse model. In this study, we investigated the immunogenicity of DCs combined with pomalidomide and dexamethasone in a myeloma mouse model. MOPC-315 cells were injected subcutaneously to establish myeloma-bearing mice. Four test groups were used to mimic clinical protocol: (1) PBS control, (2) DCs, (3) pomalidomide + dexamethasone, and (4) DCs + pomalidomide + dexamethasone. The combination of DCs plus pomalidomide and dexamethasone displayed greater inhibition of tumor growth compared to the other groups. This effect was closely related with reduced numbers of immune suppressor cells including myeloid-derived suppressor cells, M2 macrophages, and regulatory T cells, with the induction of immune effector cells such as CD4+ and CD8+ T cells, memory T cells, natural killer (NK) cells, and M1 macrophages, and with the activation of T lymphocytes and NK cells in the spleen. Moreover, the level of the immunosuppressive factor vascular endothelial growth factor was significantly reduced in the tumor microenvironment. The collective findings in the murine myeloma model suggest that tumor antigen-loaded DCs combined with pomalidomide and dexamethasone synergistically enhance antitumor immunity by skewing the immune-suppressive status toward an immune-supportive status

    Diagnosis of Pure Ulnar Sensory Neuropathy Around the Hypothenar Area Using Orthodromic Inching Sensory Nerve Conduction Study: A Case Report

    Get PDF
    Ulnar neuropathy at the wrist is an uncommon disease and pure ulnar sensory neuropathy at the wrist is even rarer. It is difficult to diagnose pure ulnar sensory neuropathy at the wrist by conventional methods. We report a case of pure ulnar sensory neuropathy at the hypothenar area. The lesion was localized between 3 cm and 5 cm distal to pisiform using orthodromic inching test of ulnar sensory nerve to stimulate at three points around the hypothenar area. Ultrasonographic examination confirmed compression of superficial sensory branch of the ulnar nerve. Further, surgical exploration reconfirmed compression of the ulnar nerve. This case report demonstrates the utility of orthodromic ulnar sensory inching test

    Lenalidomide and Programmed Death-1 Blockade Synergistically Enhances the Effects of Dendritic Cell Vaccination in a Model of Murine Myeloma

    Get PDF
    The therapeutic efficacy of dendritic cell (DC)-based immunotherapy may be potentiated in combination with other anticancer therapies that enhance DC function by modulating immune responses and the tumor microenvironment. In this study, we investigated the efficacy of DC vaccination in combination with lenalidomide and programmed death (PD)-1 blockade in a model of murine myeloma. MOPC-315 cell lines were injected subcutaneously to establish myeloma-bearing mice and the following five test groups were established: PBS control, DCs, DCs + lenalidomide, DCs + PD-1 blockade, and DCs + lenalidomide + PD-1 blockade. The combination of DCs plus lenalidomide and PD-1 blockade more potently inhibited tumor growth compared to the other groups. This effect was associated with a reduction in immune suppressor cells (such as myeloid-derived suppressor cells, M2 macrophages, and regulatory T cells) and an increase in immune effector cells [such as CD4+ and CD8+ T cells, natural killer (NK) cells, and M1 macrophages] in the spleen. Functional activities of cytotoxic T lymphocytes and NK cells were also enhanced by the triple combination. Levels of immunosuppressive cytokines, such as TGF-β and IL-10, were significantly reduced in the tumor microenvironment. These findings suggest that the combination of DCs plus lenalidomide and PD-1 blockade synergistically establishes a robust anti-myeloma immunity through a two-way mechanism, which inhibits immunosuppressive cells while activating effector cells with superior polarization of the Th1/Th2 balance in favor of the tumor immune response. This result should provide an experimental ground for incorporating check point inhibitors to existing immunotherapeutic modalities against multiple myeloma
    corecore