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Abstract 
Random numbers are widely used in various applications. In the majority of cases, a 

pseudo-random number generator is used since true random number generators are slow and 
they are barely suitable for the hardware implementation. In this paper, we present new 
architecture of URNG (uniform random number generator) employing Leap-Ahead LFSR 
architecture for hardware implementation. In particular, the proposed URNG consists of two 
more segmented Leap-Ahead LFSRs to overcome the drawback of the conventional URNG 
employing Leap-Ahead architecture, that is, the sharp decrease of a maximum period of the 
generated random numbers. Thus, the proposed URNG with segmented LFSR architecture 
can generate multiple bits random number in a cycle without the frequent diminishing of 
maximum period of the generated random numbers. We prove the efficiency of the proposed 
segmented LFSR-architecture through the mathematical analysis. The simulation results 
show that the proposed URNG employing segmented Leap-Ahead LFSR architecture can be 
increased 2.5 times of the maximum period of generated random numbers compared to the 
URNG using the conventional Leap-Ahead architecture. 
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1. Introduction 

In general, random numbers are used in a wide variety of applications, in particular, 
cryptography. The many applications of randomness have led to the development of several 
different methods for generating random data. There are two different methods used to 
generate random numbers. One measures some physical phenomenon that is expected to be 
random and then compensates for possible biases in the measurement process. The other uses 
computational algorithms that can produce long sequences of apparently random numbers, 
which are in fact completely determined by a shorter initial value, known as a seed value or 
key. The latter case is often called pseudo-random number generator against true random 
number obtained from the former case. Pseudo-random numbers are very useful in 
developing cryptography so long as the seed keep secret. Sender and receiver can generate the 
same set of random numbers automatically to use as the secret key, seed. A pseudo-random 
number generator is the algorithm that can automatically produce the long runs of numbers 
with good random properties but eventually the sequence repeats. 

The cryptography mechanisms can be categorized into symmetric key cryptography, 
asymmetric key cryptography and crypto hash function [1]. In particular, a symmetric key 
cryptography uses same secret key, that is, private key, to encrypt and decrypt the data, 
whereas an asymmetric key cryptography uses both public key and private one [2]. Both of 
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them have a crucial problem in the key distribution and management. If the secret key, seed 
leak out, the original message shall be resolved by the cracker regardless of the cryptography 
mechanisms employed. Thus, the secret key must be long enough so that an attacker cannot 
try all possible combinations. In addition, the lack of randomness in the sequences of random 
numbers obtained from the RNG (random number generator) shall be disastrous. Thus, the 
random numbers generated by the key should contain sufficient entropy to prevent the 
cryptanalytic breaks. .  

Most pseudo-random number generating algorithms involve complex mathematical 
operations and they are not suitable to be implemented in hardware owing to its complexity. 
There are less complex methods that can be implemented in hardware. In particular, A LFSR 
based RNG is one of the most popular algorithm since it could be easily described with HDL 
language as compact hardware [3-7]. The most common way to implement a random number 
generator in hardware is a LFSR based RNG that can generate single random bit per cycle. 
The ever growing complexities in the various applications require the RNG generating 
multiple random numbers per cycle. A multiple LFSR based RNG architecture is introduced 
to implement a URNG can generate multiple random bits per cycle. This architecture requires 
n different LFSRs to output n-bit random numbers per cycle. Even though this architecture 
can generate multiple random bits per cycle, it suffers from the hardware complexity. Gu and 
Zhang presented a Leap-ahead architecture has presented to solve this problem [6]. They 
introduced the architectures of RNG employing Leap-Ahead LFSRS of both Galois type and 
Fibonacci one. This RNG can generate an m-bits random number per cycle even though it 
requires only one LFSR. In spite of the advantages in hardware complexity, this architecture 
has significant drawback that is the decrease in the maximum period of generated random 
numbers. In this architecture, the maximum period of the generated random numbers can be 
kept as 2n-1, when 2n-1 and m could not be divided by each other. Otherwise, the maximum 
period of random numbers shall be smaller than 2n-1. Here, n is the number of LFSR stages 
and m is the number of the output bits of the RNG. 

This paper presents new architecture for Leap-Ahead LFSR architecture by employing the 
segmentation technique. The proposed architecture can solve the problem of the conventional 
Leap-Ahead architecture without significant area overhead. Nevertheless, it can generate the 
multi-bits random number per cycle. We prove the efficiency of the proposed segmentation 
technique using the precise mathematical analysis. We also demonstrate the proposed 
segmented Leap-Ahead LFSR architecture on Xilinx Vertex V FPGA so as to present the 
comparison results with other reported ones. The reset of this paper is organized as follows. 
Section 2 introduces the fundamentals of Leap-Ahead architecture. Section 3 presents the 
proposed segmented Leap-Ahead LFSR architecture. Section 4 describes the simulation 
results and we conclude the paper in Section 5. 
 
2. Leap-Ahead LFSR Architecture 

This section introduces the mathematical and practical characteristics of the LFSR based 
RNG, then we describe existing techniques for building multi-bits RNG including the 
conventional Leap-Ahead LFSR architecture. 

In general, there are two different types of LFSRs. The one is Galois type and the other is 
Fibonacci one. Both of them generate single random number per cycle. The generated random 
numbers are considered as pseudo-random sequences since the sequence repeats itself after a 
certain number of cycles. It is known as the period of the random number generated.  

The conventional Galois type LFSR is illustrated in Figure 1. An LFSR is a shift register 
whose input bit is a linear function of its previous state. It consists of n D-F/Fs and xi is the 
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output of i-th D-F/F. It also contains n-1 taps from C1 to Cn-1 as shown in Figure 1. This figure 
shows that i-th bit can be generated by performing m previous values with XOR operations. 
The output of last D-F/F shall be the generated random number and it only generate single bit 
at a cycle. In addition, the achievable maximum period becomes 2m-1. 

 

 

 

 

 

 

 

Figure 1. The Architecture of a Conventional Galois LFSR Architecture 

Recently, most of applications need to use a multiple random bit at a cycle. Since the 
conventional LFSR based RNG is not appropriate for the multi-bits, a multi-LFSR 
architecture was introduced to solve this problem. As multi-LFSR architecture is employed, a 
set of multiple seeds is computed at the same time. The outputs for all LFSRs are to construct 
the multi-bits random number. This means 32 different LFSRs are required to implement the 
RNG having 32-bit output. Even though this architecture can provide efficient statistical 
properties to satisfy the security randomness for most recent complex applications, it suffers 
from the hardware complexity due to the LFSR duplication. 

To solve the hardware complexity in multi-LFSR architecture, X. Gu and M. Zhang 
presented uniform RNG using the Leap-Ahead LFSR architecture [6]. Leap-Ahead LFSR can 
be established as follow. First, the relationship of the random bits generated within two 
consecutive cycle can be presented as the following recurrence equation as shown in Eq. (1). 

X(t+1) = AX(t)      (1) 

X(t) is the output of all D-F/Fs in LFSR at current time and X(t+1) represents the output of 
all D-F/Fs at the next clock cycle. A is the transform matrix. If we use m output bits from Xn-m-

1 to Xn as the generated random numbers, it can be unacceptable due to the very close 
correlation between the generated random numbers. The Leap-Ahead LFSR architecture 
exploits the transform matrix so as to avoid the close correlation between the consecutive 
random numbers generated. The m-cycle-late output can be obtained from performing the 
recurrence equation m times repeatedly. The results can be expressed as Eq. (2).  

X(t+m) = AX(t+m-1) = A{AX(t+m-2) = … = AmX(t)  (2) 

Then, the outputs constitute a new sequence of the generated random numbers. In this case, 
the close correlation between the neighboring random numbers shall be decreased. If m 
operations can be performed in a cycle, Eq. (2) can be represented as Eq. (3). 

X’(t+1) = AmX’(t)      (3) 

, where Am is the new transform matrix to acquire the m-cycle-late outputs of all D-F/Fs in 
Figure 1 in a cycle. In addition, the output from all D-F/Fs is m-bit from X1 to Xn, thereby it 
can generate the multiple bits random numbers at a cycle. These two facts are the main 
advantages of Leap-Ahead LFSR architecture compared to the other LFSR based RNG. 
However, the Leap-Ahead LFSR architecture has significant drawback associated with the 
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maximum period of the generated random numbers. The achievable maximum period of the 
conventional LFSR based RNG becomes 2m-1 when m is the number of output of RNG. This 
result can be obtained when the designers carefully choose the taps of the original LFSR. 
However, the maximum period of the random number generated in the conventional Leap-
Ahead LFSR based RNG is obtained from Eq. (4). 

             (4) 

  

,where [2n-1, m] represents the LCM (lease common multiple) of 2n-1 and m. The maximum 
period, T becomes 2n-1 when 2n-1 is not divided into m. In the other cases, the maximum 
period, T becomes smaller. It becomes a great challenge to make sure that the maximum 
period of the random numbers generated should be closed to the ideal maximum period of 2n-
1 regardless of whether 2n-1 is not divided into m or not. This paper presents new Leap-
Ahead architecture employing segmented LFSR to enhance the maximum period when 2n-1 is 
divided into m. The more detailed description of the proposed segmented Leap-Ahead 
architecture is introduced in the next section. 
 
3. The Proposed Segmented Leap-Ahead LFSR Architecture 

The conventional Leap-Ahead LFSR architecture is enough lightweight due to the 
simplicity of LFSRs and their low hardware complexity, while still providing efficient 
statistical property. On the other hand, it suffers from the significant decrease in the 
maximum period of the random numbers generated. In general, it is important that we make a 
balance between the maximum period and the close correlation level of the random numbers. 
Thus, the unintended discrete drop of the maximum period of random numbers generated is 
occurred when 2n-1 is not divided into m as described in the previous section. This paper 
presents new segmentation technique for Leap-Ahead LFSR architecture. In this section, we 
describe the mathematical analysis and the deduced architecture in detail. 

The conventional Leap-ahead architecture having n registers outputs m-th result as the 
random numbers. It can generate the multi-bits random number per cycle. 4-bit LFSR 
architecture as shown in Figure 1, for example, generates a sequence of 4-bits random 
numbers. As shown in Figure 2(a), the generated sequence composes of 15 elements. The 
sequence of random numbers generated is neither infinite nor truly random. Nevertheless, it is 
good enough to satisfy almost any statistical test of randomness. However, it suffers from the 
significant drawback, that is, the very close correlation between the neighboring random 
numbers. A Leap-Ahead architecture is a good alternative that can overcome this problem 
since it can output m-cycle-late output as a random number in a cycle. If we set m to 3, the 
elements of the generated random number sequence become {0000, 0111, 0010, 1101, 0111, 
1011, 0110, 0100, 1001, 1110, 0101, 1100, 1000, 0001, 1111, 1010}. The length of the 
sequence of the random numbers is 15. Such a sequence is said to be pseudo-random since 
the generated random number will be cyclic. 

The conventional Leap-Ahead architecture employing 4-bit LFSR can generate m-clock-
late random number per a cycle set as shown in Figure 2. The sequence of random numbers 
generated is changed by m has a range from 2 to 14. For example, when m is 2, the sequence 
of random numbers generated is {1011, 0110, 1000, 0010, 1001, 1111, 0111, 0101}. The 
maximum period of the generated random numbers is 8 and the sequence becomes cyclic with 
period 8. In a similar way, the maximum period of the generated random numbers are 16 and 
4 when m is 3 and 4, respectively. These results are different with the results obtained from 
Eq. (4) that presented by X. Gu [6]. The period of the random number generated by the 

n[2 -1,m]T = m
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corresponding Leap-Ahead LFSR having following relationship with n and m as shown in Eq. 
(5). 

             (5) 

 
Consequently, the maximum period of generated random numbers are different according 

to m. The period of the random number generated, T is maximum value when 2n is not 
divided into m. Table 1 shows the maximum period of the generated random numbers 
associated with n and m. If the number of finite states is 16, the maximum period is occurred 
when m is 3, 5, 7, 9, 11, 13, and 15. This result suggests that the best choice for the modulus 
m is a relatively prime with 2n. Thus, we could choose the m and n of the Leap-Ahead LFSR 
to make sure that the one-bit stream generated has a maximum period of 2n.  
 

 

Figure 2. Basic Sequence Set of Galois 

Table 1. Maximum Period of Random Number Generated According to n and m 
             n 

m 2 3 4 n 
m 2 3 4 

2 2 4 8 9 - - 16 
3 4 8 16 10 - - 8 
4 - 2 4 11 - - 16 
5 - 8 16 12 - - 4 
6 - 4 8 13 - - 16 
7 - 8 16 14 - - 8 
8 - - 2 15 - - 16 

We divide this architecture into two more segments that have maximum period in this 
paper in order to increase the maximum period of the random number generated in Leap-
Ahead architecture. Obviously, the maximum period of generated random numbers for the 
proposed segmented Leap-Ahead architecture should be shortening than 2n but the period is 
significantly longer than the period for the conventional LFSR based URNG. In this section, 
we describe the proposed segmented Leap-Ahead LFSR in detail. 

First, we use Galois type Leap-Ahead LFSR architecture to improve the state utilization 
ratio. Thus, we also generate transform matrix using the same way of the previously presented 
by X. Gu [X.Gu]. Thus, the proposed Leap-Ahead LFSR can generate m-cycle-late random 
number in a cycle using X(t+1)=AmX(t) as shown in Eq. 3. The maximum period of the 

n[2 , m]T = m
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generated random numbers is 2n as shown in Figure 2. However, the proposed Leap-Ahead 
architecture employs the segmentation technique for LFSR architecture as shown in Figure 3. 
The proposed architecture divides entire LFSR as two more segments having same 
architecture of Leap-Ahead LFSR architecture. The number of stages in each segment is less 
than half of total stages in Leap-Ahead architecture.  

There are two differences in terms of the control mechanism compared to the conventional 
Leap-Ahead LFSR architecture. First, the proposed architecture employs two more clock 
signals to drive the corresponding segmented LFSRs. In particular, the upper clock will be 
divided as the number of all possible states in the lower segmented LFSR. For example, the 
upper clock should be 1MHz when the lower segmented LFSR uses 16MHz and it can output 
16 distinct random numbers. Second, it employs one more multiplexers to select the 
destination of the feedback output from the end of lower segmented LFSR. Control signal, sel 
chooses the output to each segmented Leap-Ahead LFSR. If the number of random numbers 
generated, 2n is not divided by m, the number of outputs, the proposed LFSR is not divided 
into two parts. Thus, the output of Segment#2 is inputted into Segment#1 and the output of 
Segment#1 is propagated as input of Segemnt#2. The period of generated random numbers 
for this case is equal to that of the conventional Leaf-Ahead LFSR. However, the proposed 
LFSR is divided into two segments when the number of random numbers generated, 2n is 
divided by m. Then, the output of Segment#2 is fed into the Segment#2, not Segment#1. In 
addition, the output of Segment#1 is also inputted into Segment1. Thus, both segments work 
independently and the period of generated random numbers. 

 

Figure 3. The Proposed Architecture of Segmented Leap-Ahead Architecture 

There are four cases are produced depending the number of stages, n and the number of 
outputs, m are even or odd when the number of random numbers generated, 2n is divided by 
m as shown in Figure 4. For example, the segment#1 and segment#2 operate independently 
when the number of random numbers generated, 2n is divided by m. In case 1, both the 
number of stages in LFSR n and the number of output bits m are even numbers. In this case, 
Segment#1 contains n/2 stages in LFSR and it outputs m/2 output bits. In addition, 
Segment#2 contains n/2 stages in LFSR and it outputs m/2 output bits. 
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Consequently, maximum period of random numbers generated in the proposed segmented 

Leap-Ahead LFSR consists of two segmented LFSRs containing i D-F/Fs and j D-F/Fs 
becomes  

 

 

 

The proposed segmented Leap-Ahead LFSR can increase maximum period of random 
numbers generated even though 2n is divided by m. Furthermore, the proposed 
architecture does not require the significant area overhead compared to the conventional 
Leap-Ahead LFSR URNG. Only the circuit for controlling multiplexer and another 
clock input in Figure 3 is added. Thus, it can enhance the efficiency of the proposed. 
 
4. Simulation Results 

In this section, we show the simulation results of the proposed Leap-Ahead LFSR 
URNG compared to the other counterparts such as multi-LFSRs and Leap-Ahead LFSR 
URNGs. The proposed URNG is synthesized using VHDL and it is implemented on the 
Xilinx ISE 10.1, Virtex II PRO with a device XC2VP30. Figure 4 shows the simulation 
waveform of the design example having 4 stages in LFSR and outputs 4 bits random 
numbers. 

Figure 5 shows the comparison results in respect to maximum period of random 
numbers generated between the conventional and the proposed Leap-Ahead URNGs. As 
shown in Figure 5, the maximum period of the proposed architecture is same with that 
of the conventional architecture when 2n-1 and m could not divide by each other. 
However, the maximum period of the random numbers generated is greater when 2n-1 
and m could divide by each other. The difference of maximum period is up to 2.5 times 
compared to the conventional Leap-Ahead LFSR architecture. 
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Figure 4. Simulation Results of the Proposed Segmented Leap-Ahead LFSR 
URNG 

 

Figure 5. Comparison Results of Maximum Period between the Conventional 
and the Proposed Leap-Ahead LFS URNGs when the m is 3 

Table 2 shows the simulation results when we set m to 18. This result shows that the 
proposed architecture requires 35% area overhead and 21% increase in clock length 
compared to the conventional Leap-Ahead LFSR. However, the maximum period of the 
generated random numbers for the conventional Leap-Ahead LFSR and the proposed 
segmented Leap-Ahead one are 29,127 and 261,121, respectively. Thus, the proposed 
segmented LFSR architecture is more effective in trade-off between the maximum 
period of random numbers generated and the hardware complexity. 

Table 2. Simulation Results when m is 18 

 
Maximum  

period 
Number of 

segmentations 
H/W complexity  

(Slices) 
Clock freq. 

(MHz) 
Conventional Leap- 
Ahead LFSR 29,127 1 26 651 

Proposed segmented  
Leap-Ahead LFSR 261,121 2 35 535 

 
Finally, we show the comparison results with respect to the area and throughput 

between the proposed architecture and its counterparts in Table 3. The area time 
performance of the proposed segmented Leap-Ahead URNG is 2.36 slices x sec per is 
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2.36 and it is similar that of the conventional Leap-Ahead architecture. In addition, the 
throughput is also similar with that of the conventional Leap-Ahead URNG. This result 
shows that the proposed segmented Leap-Ahead URNG has similar area and 
performance with the conventional Leap-Ahead architecture even though the maximum 
period of the generated random number is dramatically increased. Consequently, the 
proposed architecture is more profitable for the data security system.  

Table 3. Area and Throughput Comparison with the Other Counterparts 

 
Area Time 

slices x sec per bit x10-9 
(smaller is better) 

Throughput 
Bits per sec x109  
(larger is better) 

Conventional Leap-Ahead 
LFSR  2.18 17.87 

Multi-LFSR architecture 19.05 20.63 

Proposed segmented Leap-
Ahead  2.36 17.56 

 
5. Conclusions 

A conventional Galois LFSR random number generator is small and fast to generate 
random number. However, it generates only one random bit per cycle. As the use of 
multiple random bits at a time, Multi-LFSRs architecture was presented. However, this 
Multi-LFSRs architecture requires the number of LFSRs equal to the number of random 
bits. On the contrary, a conventional Leap-Ahead LFSR is more useful since it occupies 
small circuit area that is almost 10% of multi-LFSR and it has similar throughput. 
However, it has significant drawback that is the serious decrease in maximum period of 
the random numbers generated when 2n and m could divide by each other. The proposed 
segmented Leap-Ahead LFSR can preserve the maximum period for all conditions. The 
simulation results show that the proposed architecture has similar throughput with 
almost same circuit size. In addition, it can increase the maximum period up to 2.5 
times when 2n and m could divide by each other. Consequently, the proposed 
architecture is more profitable for the data security system. 
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