54 research outputs found

    Dendritic Cells as Danger-Recognizing Biosensors

    Get PDF
    Dendritic cells (DCs) are antigen presenting cells that are characterized by a potent capacity to initiate immune responses. DCs comprise several subsets with distinct phenotypes. After sensing any danger(s) to the host via their innate immune receptors such as Toll-like receptors, DCs become mature and subsequently present antigens to CD4+ T cells. Since DCs possess the intrinsic capacity to polarize CD4+ helper cells, it is critical to understand the immunological roles of DCs for clinical applications. Here, we review the different DC subsets, their danger-sensing receptors and immunological functions. Furthermore, the cytokine reporter mouse model for studying DC activation is introduced

    Natural Killer Dendritic Cells Enhance Immune Responses Elicited by α-Galactosylceramide-Stimulated Natural Killer T Cells

    Get PDF
    Natural killer dendritic cells (NKDCs) possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT) cells is required for the anti-tumor immune responses that are elicited by α-galactosylceramide (α-GC) in mice. The rapid and strong expression of interferon-γ by NKDCs after α-GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated following α-GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited by α-GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated by α-GC-stimulated NKT cells in vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis

    CD1d-Dependent iNKT Cells Control DSS-Induced Colitis in a Mouse Model of IFNγ-Mediated Hyperinflammation by Increasing IL22-Secreting ILC3 Cells

    No full text
    We have previously shown that CD1d-restricted iNKT cells suppress dysregulated IFNγ expression and intestinal inflammation in Yeti mice on the C57BL/6 background. Since type 3 innate lymphoid cells (ILC3s) in mesenteric lymph nodes (MLN) protect against intestinal inflammation in a CD1d-associated manner, we investigated whether crosstalk between iNKT cells and MLN ILC3s controls IFNγ-mediated intestinal inflammation in Yeti mice. We found that Yeti mice display increased levels of ILC3s and that iNKT cell deficiency in Yeti/CD1d KO mice decreases levels of IL22-producing ILC3s during DSS-induced colitis. This finding indicates that iNKT cells and ILC3s cooperate to regulate intestinal inflammation in Yeti mice. Yeti iNKT cells displayed a pronounced anti-inflammatory (IL4- or IL9-producing) phenotype during colitis. Their adoptive transfer to iNKT cell-deficient animals induced a significant increase in IL22 production by ILC3s, indicating that crosstalk between iNKT cells and ILC3s plays a critical role in modulating colitis in Yeti mice. Moreover, we showed that the IL9-producing subset of iNKT cells potently enhances IL22-producing ILC3s in vivo. Taken together, our results identify a central role of the iNKT cell-ILC3 axis in ameliorating IFNγ-mediated intestinal inflammation

    Opposing Roles of DCs and iNKT Cells in the Induction of Foxp3 Expression by MLN CD25<sup>+</sup>CD4<sup>+</sup> T Cells during IFNγ-Driven Colitis

    No full text
    We have previously shown that a deficiency of CD1d-restricted invariant natural killer T (iNKT) cells exacerbates dextran sulfate sodium (DSS)-induced colitis in Yeti mice that exhibit IFNγ-mediated hyper-inflammation. Although iNKT cell-deficiency resulted in reduced Foxp3 expression by mesenteric lymph node (MLN) CD4+ T cells in DSS-treated Yeti mice, the cellular mechanisms that regulate Foxp3 expression by CD25+CD4+ T cells during intestinal inflammation remain unclear. We found that Foxp3−CD25+CD4+ T cells expressing Th1 and Th17 phenotypic hallmarks preferentially expanded in the MLNs of DSS-treated Yeti/CD1d knockout (KO) mice. Moreover, adoptive transfer of Yeti iNKT cells into iNKT cell-deficient Jα18 KO mice effectively suppressed the expansion of MLN Foxp3−CD25+CD4+ T cells during DSS-induced colitis. Interestingly, MLN dendritic cells (DCs) purified from DSS-treated Yeti/CD1d KO mice promoted the differentiation of naive CD4+ T cells into Foxp3−CD25+CD4+ T cells rather than regulatory T (Treg) cells, indicating that MLN DCs might mediate Foxp3+CD25+CD4+ T cell expansion in iNKT cell-sufficient Yeti mice. Furthermore, we showed that Foxp3−CD25+CD4+ T cells were pathogenic in DSS-treated Yeti/CD1d KO mice. Our result suggests that pro-inflammatory DCs and CD1d-restricted iNKT cells play opposing roles in Foxp3 expression by MLN CD25+CD4+ T cells during IFNγ-mediated intestinal inflammation, with potential therapeutic implications

    CD4 +

    No full text
    corecore