32 research outputs found

    Characterization of Vacuolating cytotoxin A binding to sphingomyelin in Helicobacter pylori pathogenesis

    Get PDF
    The main objective of my research project is to characterize vacuolating cytotoxin A (VacA) from Helicobacter pylori binding to an important host cell membrane lipid, sphingomyelin (SM). Previously, our laboratory showed that plasma membrane SM is important for the toxin biological activity, cell surface binding, and toxin-receptor direct interactions suggesting that SM is a receptor for VacA. Moreover, recent findings from our laboratory showed that R552, W603, and R647 of VacA are important that when changed to alanine, resulting in decreased SM-dependent VacA activity in gastric epithelial cells. However, the molecular basis of SM-VacA interactions remains unknown. My research focuses molecular on the detailed molecular mechanism by which these three residues of VacA interact with SM in SM-dependent toxin cellular activities. I will evaluate the hypothesis that R552, W603, and R647 on VacA facilitate its SM binding by interacting with the phosphorylcholine head group of SM. To test this hypothesis, I will conduct site-directed mutagenesis analysis to evaluate the specific properties of the three residues (R552/W603/R647) that are important for SM-dependent toxin cellular activities. I will evaluate the prediction that VacA interacts with SM through pi-cation interactions between the aromatic ring of tryptophan and choline moiety of head group of SM and ionic interactions between positively charged arginine residues and negatively charged phosphate moiety of SM. Testing this prediction, I am evaluating the toxin cellular activity of charge conservative and non-conservative single substitution mutations in the three residues. The results of this study will provide the framework for the molecular interactions behind VacA-SM interactions.Ope

    Reference Electrode at Molten Salt: A Comparative Analysis of Electroceramic Membranes

    Get PDF
    A reference electrode is important for controlling electrochemical reactions. Evaluating properties such as the reduction potential of the elements is necessary to optimize the electrochemical processes in pyroprocessing, especially in a multicomponent environment. In molten chloride systems, which are widely used in pyroprocessing, a reference electrode is made by enclosing the silver wire and molten salt solution containing silver chloride into the membranes. However, owing to the high temperature of the molten salt, the choice of the membrane for the reference electrode is limited. In this study, three types of electroceramic, mullite, Pyrex, and quartz, were compared as reference electrode membranes. They are widely used in molten salt electrochemical processes. The potential measurements between the two reference electrode systems showed that the mullite membrane has potential deviations of approximately 50 mV or less at temperatures higher than 650??C, Pyrex at temperatures lower than 500??C, and quartz at temperatures higher than 800??C. Cyclic voltammograms with different membranes showed a significant potential shift when different membranes were utilized. This research demonstrated the uncertainties of potential measurement by a single membrane and the potential shift that occurs because of the use of different membranes

    miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol

    Get PDF
    Background: It is known that some environmental chemicals affect the human endocrine system. The harmful effects of endocrine disrupting chemical (EDC) nonylphenol (NP) have been studied since the 1980s. It is known that NP adversely affects physiological functions by mimicking the natural hormone 17 beta-estradiol. In the present study, we analyzed the expression of miRNAs and their target genes in mouse Sertoli TM4 cells to better understand the regulatory roles of miRNAs on Sertoli cells after NP exposure. Methods: Mouse TM4 Sertoli cells were treated with NP for 3 or 24 h, and global gene and miRNA expression were analyzed using Agilent mouse whole genome and mouse miRNA v13 arrays. Results: We identified genes that were > 2-fold differentially expressed in NP-treated cells and control cells (P < 0.05) and analyzed their functions through Gene Ontology analysis. We also identified miRNAs that were differentially expressed in NP-treated and control cells. Of the 186 miRNAs the expression of which differed between NP-treated and control cells, 59 and 147 miRNAs exhibited 1.3-fold increased or decreased expression at 3 and 24 h, respectively. Network analysis of deregulated miRNAs suggested that Ppara may regulate the expression of certain miRNAs, including miR-378, miR-125a-3p miR-20a, miR-203, and miR-101a, after exposure to NP. Additionally, comprehensive analysis of predicted target genes for miRNAs showed that the expression of genes with roles in cell proliferation, the cell cycle, and cell death were regulated by miRNA in NP-treated TM4 cells. Levels of expression of the miRNAs miR-135a* and miR-199a-5p were validated by qRT-PCR. Finally, miR-135a* target gene analysis suggests that the generation of reactive oxygen species (ROS) following exposure to NP exposure may be mediated by miR-135a* through regulation of the Wnt/beta-catenin signaling pathway. Conclusions: Collectively, these data help to determine NP's actions on mouse TM4 Sertoli cells and increase our understanding of the molecular mechanisms underlying the adverse effects of xenoestrogens on the reproductive system.This work was supported an Eco-Technopia 21 project grant from the Ministry of Environment (Development of Decision Method of Chromosomal Abnormality in Reproductive System by Toxic Substances at the Korea Institute of Toxicology)

    HMGB1, a potential regulator of tumor microenvironment in KSHV-infected endothelial cells

    Get PDF
    High-mobility group box 1 (HMGB1) is a protein that binds to DNA and participates in various cellular processes, including DNA repair, transcription, and inflammation. It is also associated with cancer progression and therapeutic resistance. Despite its known role in promoting tumor growth and immune evasion in the tumor microenvironment, the contribution of HMGB1 to the development of Kaposiā€™s sarcoma (KS) is not well understood. We investigated the effect of HMGB1 on KS pathogenesis using immortalized human endothelial cells infected with Kaposiā€™s sarcoma-associated human herpes virus (KSHV). Our results showed that a higher amount of HMGB1 was detected in the supernatant of KSHV-infected cells compared to that of mock-infected cells, indicating that KSHV infection induced the secretion of HMGB1 in human endothelial cells. By generating HMGB1 knockout clones from immortalized human endothelial cells using CRISPR/Cas9, we elucidated the role of HMGB1 in KSHV-infected endothelial cells. Our findings indicate that the absence of HMGB1 did not induce lytic replication in KSHV-infected cells, but the cell viability of KSHV-infected cells was decreased in both 2D and 3D cultures. Through the antibody array for cytokines and growth factors, CXCL5, PDGF-AA, G-CSF, Emmprin, IL-17A, and VEGF were found to be suppressed in HMGB1 KO KSHV-infected cells compared to the KSHV-infected wild-type control. Mechanistically, phosphorylation of p38 would be associated with transcriptional regulation of CXCL5, PDGF-A and VEGF. These observations suggest that HMGB1 may play a critical role in KS pathogenesis by regulating cytokine and growth factor secretion and emphasize its potential as a therapeutic target for KS by modulating the tumor microenvironment

    Comprehensive Analysis of Compressible Perceptual Encryption Methodsā€”Compression and Encryption Perspectives

    No full text
    Perceptual encryption (PE) hides the identifiable information of an image in such a way that its intrinsic characteristics remain intact. This recognizable perceptual quality can be used to enable computation in the encryption domain. A class of PE algorithms based on block-level processing has recently gained popularity for their ability to generate JPEG-compressible cipher images. A tradeoff in these methods, however, is between the security efficiency and compression savings due to the chosen block size. Several methods (such as the processing of each color component independently, image representation, and sub-block-level processing) have been proposed to effectively manage this tradeoff. The current study adapts these assorted practices into a uniform framework to provide a fair comparison of their results. Specifically, their compression quality is investigated under various design parameters, such as the choice of colorspace, image representation, chroma subsampling, quantization tables, and block size. Our analyses have shown that at best the PE methods introduce a decrease of 6% and 3% in the JPEG compression performance with and without chroma subsampling, respectively. Additionally, their encryption quality is quantified in terms of several statistical analyses. The simulation results show that block-based PE methods exhibit several favorable properties for the encryption-then-compression schemes. Nonetheless, to avoid any pitfalls, their principal design should be carefully considered in the context of the applications for which we outlined possible future research directions

    Pre-analytical handling conditions and protein marker recovery from urine extracellular vesicles for bladder cancer diagnosis.

    No full text
    Extracellular vesicles (EVs) contain a variety of biomolecules and provide information about the cells that produce them. EVs from cancer cells found in urine can be used as biomarkers to detect cancer, enabling early diagnosis and treatment. The potential of alpha-2-macroglobulin (A2M) and clusterin (CLU) as novel diagnostic urinary EV (uEV) biomarkers for bladder cancer (BC) was demonstrated previously. To validate the diagnostic value of these proteins in uEVs in a large BC cohort, urine handling conditions before uEV isolation should be optimized during sample transportation from medical centers. In this study, we analyzed the uEV protein quantity, EV particle number, and uEV-A2M/CLU after urine storage at 20Ā°C and 4Ā°C for 0-6 days, each. A2M and CLU levels in uEVs were relatively stable when stored at 4Ā°C for a maximum of three days and at 20Ā°C for up to 24 h, with minimal impact on analysis results. Interestingly, pre-processing to remove debris and cells by centrifugation and filtration of urine did not show any beneficial effects on the preservation of protein biomarkers of uEVs during storage. Here, the importance of optimizing shipping conditions to minimize the impact of pre-analytical handling on the uEVs protein biomarkers was emphasized. These findings provide insights for the development of clinical protocols that use uEVs for diagnostic purposes

    Defect-Stabilized Tin-Based Perovskite Solar Cells Enabled by Multifunctional Molecular Additives

    No full text
    Sn-based perovskite solar cells (Sn-PSCs) are the most viable replacements for Pb-based PSCs. However, the facile oxidation of Sn2+ and a high defect density on the surfaces and grain boundaries in Sn-PSCs complicate the task of attaining highly stable Sn-PSCs. Here, both surfaces and grain boundaries are passivated using a fulleropyrrolidine with a triethylene glycol monoethyl ether side chain (PTEG-1) as a multifunctional molecular additive for the first time. The ether group and fullerene group in PTEG-1 interact with Sn2+ and I-, respectively, thereby inhibiting the formation of Sn4+ and I3-. This multifunctional passivation suppresses nonradiative recombination and improves the stability of Sn-PSCs. As a result, Sn-PSCs with encapsulation retain 65% of their initial power conversion efficiency after 1000 h of light illumination under ambient conditions. Our results provide a guideline for the future design of multifunctional molecules with functional groups that enable the fabrication of stable Sn-PSCs.11Nsciescopu
    corecore