1,086 research outputs found

    Intraspinal Lymphangioma Mimicking Lumbar Disc Herniation

    Get PDF
    Intraspinal soft tissue lymphangioma is extremely rare and very few cases of intraspinal lymphangioma have been reported. To our knowledge, most reported intraspinal lymphangioma cases manifested only pain or minor neurologic sign. We report here one case of intraspinal lymphangioma which caused profound foot drop. Total removal could be achieved by two microscopic surgeries because of initial misdiagnosis as an organized herniated disc fragment. Six months later, the weakness of her right ankle and big toe was improved to grade 3. There was no evidence of clinical recurrence or aggravation at the final followup visit. If there is an impression suggesting tumorous lesion as in our case, more aggressive evaluation and treatment policy is required to avoid unnecessary further surgery

    Occupational Factors Associated with Changes in the Body Mass Index of Korean Male Manual Workers

    Get PDF
    OBJECTIVES: This study was carried out to analyze and compare the occupational factors that could influence changes in body mass index (BMI) in male manual workers stratified into short-term and long-term work experience groups. METHODS: The subjects were 299 male manual workers (sampled systematically) from 27 workplaces, who had undergone travelling medical examinations at a university hospital between March 28 and May 10, 2013, and had also undergone medical examinations at the same hospital in 2012. Their general and occupational characteristics were investigated through a structured, self-administered questionnaire. The BMI at each point in time was calculated based on the anthropometric results of the medical examinations. Multiple regression analyses were conducted on outcomes of the BMI change and predictors composed of the general and occupational characteristics, with the subjects stratified into groups with 5 years or less (short-term) versus more than 5 years (long-term) of work experience at the present post. RESULTS: In the short-term work experience group, the BMI increases of 3-shift workers and groups reporting disagreement with feeling “insufficient job control” and “lack of reward” at work, two of the subscales of job stress, were significantly higher than those of daytime workers and high-stress groups, respectively. In the long-term work experience group, However, although the BMI increase for 3-shift workers was also significantly higher than that of daytime workers, none of the job stress factors were significantly associated with a BMI increase, whereas the social factors of education and marital status were significant, and some lifestyle factors (such as smoking and regular exercise) were also significant. CONCLUSION: This study showed that, except for 3-shift work, the factors associated with BMI increase could differ depending on the length of job experience. Consequently, different strategies may be needed for workers with short-term versus long-term job experience when designing interventions for preventing their obesity

    Acute Symptoms after a Community Hydrogen Fluoride Spill

    Get PDF
    OBJECTIVES: This study was conducted to describe the demographic characteristics, and clinical signs and symptoms of patients who visited a general hospital because of the release of chemically hazardous hydrogen fluoride that occurred on September 27, 2012 in Gumi City, Korea. METHODS: The medical records at 1 general hospital 9 km from the accident site were reviewed using a standardized survey format. There were 1,890 non-hospitalized and 12 hospitalized patients exposed to hydrogen fluoride between September 27 and October 13 2012. RESULTS: Among the 12 hospitalized patients, 11 were discharged within 1 week and the other was hospitalized for 10 days. The chief complaints were respiratory symptoms such as hemoptysis and shortness of breath, gastrointestinal symptoms, neurologic symptoms, sore throat, and lip burn. The number of non-hospitalized patients exhibited a bimodal distribution, peaking on the first and twelfth days after the accident. Their chief complaints were sore throat (24.1%), headache (19.1%), cough (13.1%), and eye irritation (9.2%); some patients were asymptomatic (6.2%). Patients who visited the hospital within 3 days (early patients) of the spill more often had shortness of breath (27.0%) and nausea (6.3%) as the chief complaints than patients who visited after 3 days (late patients) (3.5% and 2.6%, respectively). However, cough and rhinorrhea were more common in the late patients (14.0% and 3.3%, respectively) than in the early patients (5.0% and 0.0%, respectively). Patients who were closer to the accident site more often had shortness of breath and sputum as the chief complaints than patients who were farther away. The mean serum calcium concentration was 9.37 mg/dL (range: 8.4–11.0 mg/dL); none of the patients had a decreased serum calcium level. Among 48 pulmonary function test results, 4 showed decreased lung function. None of the patients had abnormal urine fluoride levels on the eighth day after exposure. CONCLUSIONS: Patients hospitalized due to chemical hazard release of hydrogen fluoride had acute respiratory, gastrointestinal, and neurologic health problems. Non-hospitalized patients have acute symptoms mainly related to upper respiratory irritation

    Ultra‐high elastic strain energy storage in hybrid metal‐oxide infiltrated polymer nanocomposites

    Get PDF
    An understanding of the mechanical properties of materials at nanometer length scales, including a material’s ability to store and release elastic strain energy, is of great significance in the effective miniaturization of actuators, sensors and resonators for use in micro-/nano-electromechanical systems (MEMS/NEMS) as well as advanced development of artificial muscles for locomotion in soft robots. The measure of a material’s ability to store and release elastic strain energy, the modulus of resilience (R), is a crucial parameter in realizing such advanced mechanical actuation technologies. Typically, engineering a material system with a large R requires large increases in the material’s yield strength yet conservative increase in Young’s modulus, an engineering challenge as the two mechanical properties are strongly coupled; generally, strengthening methods results in considerable stiffening or increase in the Young’s modulus. Here, we present hybrid composite polymer nanopillars which achieve the highest specific R ever reported, by utilizing vapor-phase aluminum oxide infiltrations into lithographically patterned polymer resist SU-8. In-situ nanomechanical measurements reveal high, metallic-like yield strengths (~500 MPa) combined with a compliant, polymeric-like Young’s modulus (~7 GPa), a unique pairing never observed in known engineering materials. It is these exceptional elastic properties of our hybrid composite which allows for realization of R per density (Rs) values ~ 11200 J/kg, orders of magnitude greater than those in most engineering material systems. The high elastic energy storage/release capability of this material, as well as its compatibility with lithographic techniques, makes it an attractive candidate in the design of MEMS devices, which require an ultra-high elastic component for advanced actuation and sensor technologies. Furthermore, an opportunity for tunability of the elastic properties of the SU-8 polymeric material exists with this fabrication technique by varying the number of infiltration cycles or the organometallic precursor Please click Additional Files below to see the full abstract

    Size Effect Suppresses Brittle Failure in Hollow Cu_(60)Zr_(40) Metallic Glass Nanolattices Deformed at Cryogenic Temperatures

    Get PDF
    To harness “smaller is more ductile” behavior emergent at nanoscale and to proliferate it onto materials with macroscale dimensions, we produced hollow-tube Cu_(60)Zr_(40) metallic glass nanolattices with the layer thicknesses of 120, 60, and 20 nm. They exhibit unique transitions in deformation mode with tube-wall thickness and temperature. Molecular dynamics simulations and analytical models were used to interpret these unique transitions in terms of size effects on the plasticity of metallic glasses and elastic instability

    Relationship between smartphone addiction and physical activity in Chinese international students in Korea

    Get PDF
    Background and Aims Excessive usage of smartphones may induce social problems, such as depression and impairment of social and emotional functioning. Moreover, its usage can impede physical activity, but the relationship between smartphone addiction and physical activity is obscure. Therefore, we examined the relationship and the impact of excessive smartphone use on physical activity. Methods This study collected data through the structured questionnaire consisting of general characteristics, the number and hours of smartphone usage, and the Smartphone Addiction Proneness Scale (SAPS) from 110 Chinese international students in Korea. The body composition and physical activity, such as the total daily number of steps and consumed calories, were measured. Results In this study, high-risk smartphone users showed less physical activity, such as the total number of steps taken and the average consumed calories per day. Moreover, their body composition, such as muscle mass and fat mass, was significantly different. Among these factors, the hours of smartphone use revealed the proportional relationship with smartphone addiction (β = 0.209, p = 0.026), while the average number of walking steps per day showed a significant reverse proportional tendency in participants with smartphone addiction (β = –0.883, p < 0.001). Conclusions Participants with smartphone addiction were less likely to walk for each day. Namely, smartphone addiction may negatively influence physical health by reducing the amount of physical activity, such as walking, resulting in an increase of fat mass and a decrease of muscle mass associated with adverse health consequences

    Intracellular Membrane Association of the Aplysia cAMP Phosphodiesterase Long and Short Forms via Different Targeting Mechanisms

    Get PDF
    Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamineinduced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between theirNtermini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P&lt;inf&gt;2&lt;/inf&gt;, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively. Š 2014 by The American Society for Biochemistry and Molecular Biology, Inc.1

    Electronic structures of hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films

    Full text link
    We investigated the electronic structure of multiferroic hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using both optical spectroscopy and first-principles calculations. Using artificially stabilized hexagonal RMnO3, we extended the optical spectroscopic studies on the hexagonal multiferroic manganite system. We observed two optical transitions located near 1.7 eV and 2.3 eV, in addition to the predominant absorption above 5 eV. With the help of first-principles calculations, we attribute the low-lying optical absorption peaks to inter-site transitions from the oxygen states hybridized strongly with different Mn orbital symmetries to the Mn 3d3z2-r2 state. As the ionic radius of the rare earth ion increased, the lowest peak showed a systematic increase in its peak position. We explained this systematic change in terms of a flattening of the MnO5 triangular bipyramid
    • …
    corecore