1,458 research outputs found

    Phase transitions in Pareto optimal complex networks

    Full text link
    The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem finding phase transitions of different kinds. Distinct phases are associated to different arrangements of the connections; but the need of drastic topological changes does not determine the presence, nor the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.Comment: 14 pages, 7 figure

    Modeling the life and death of competing languages from a physical and mathematical perspective

    Get PDF
    Recent contributions address the problem of language coexistence as that of two species competing to aggregate speakers, thus focusing on the dynamics of linguistic traits across populations. They draw inspiration from physics and biology and share some underlying ideas -- e. g. the search for minimal schemes to explain complex situations or the notion that languages are extant entities in a societal context and, accordingly, that objective, mathematical laws emerge driving the aforementioned dynamics. Different proposals pay attention to distinct aspects of such systems: Some of them emphasize the distribution of the population in geographical space, others research exhaustively the role of bilinguals in idealized situations (e. g. isolated populations), and yet others rely extremely on equations taken unchanged from physics or biology and whose parameters bear actual geometrical meaning. Despite the sources of these models -- so unrelated to linguistics -- sound results begin to surface that establish conditions and make testable predictions regarding language survival within populations of speakers, with a decisive role reserved to bilingualism. Here we review the most recent works and their interesting outcomes stressing their physical theoretical basis, and discuss the relevance and meaning of the abstract mathematical findings for real-life situations.Comment: 22 pages, 4 figures. Fifth chapter of the book Bilingualism and Minority Languages in Europe: Current trends and developments by F. Lauchlan, M. C. Parafita Couto, ed

    A multiobjective optimization approach to statistical mechanics

    Full text link
    Optimization problems have been the subject of statistical physics approximations. A specially relevant and general scenario is provided by optimization methods considering tradeoffs between cost and efficiency, where optimal solutions involve a compromise between both. The theory of Pareto (or multi objective) optimization provides a general framework to explore these problems and find the space of possible solutions compatible with the underlying tradeoffs, known as the {\em Pareto front}. Conflicts between constraints can lead to complex landscapes of Pareto optimal solutions with interesting implications in economy, engineering, or evolutionary biology. Despite their disparate nature, here we show how the structure of the Pareto front uncovers profound universal features that can be understood in the context of thermodynamics. In particular, our study reveals that different fronts are connected to different classes of phase transitions, which we can define robustly, along with critical points and thermodynamic potentials. These equivalences are illustrated with classic thermodynamic examples.Comment: 14 pages, 8 figure

    The Bohr radius of the nn-dimensional polydisk is equivalent to lognn\sqrt{\frac{\log n}{n}}

    Get PDF
    We show that the Bohr radius of the polydisk Dn\mathbb D^n behaves asymptotically as (logn)/n\sqrt{(\log n)/n}. Our argument is based on a new interpolative approach to the Bohnenblust--Hille inequalities which allows us to prove that the polynomial Bohnenblust--Hille inequality is subexponential.Comment: The introduction was expanded and some misprints correcte
    corecore