2,201 research outputs found
Discomfort luminance level of head-mounted displays depending on the adapting luminance
The Images in an immersive head-mounted display (HMD) for virtual reality provide the sole source for visual adaptation. Thus, significant, near-instantaneous increases in luminance while viewing an HMD can result in visual discomfort. Therefore, the current study investigated the luminance change necessary to induce this discomfort. Based on the psychophysical experiment data collected from 10 subjects, a prediction model was derived using four complex images and one neutral image, with four to six levels of average scene luminance. Result showed that maximum area luminance has a significant correlation with the discomfort luminance level than average, median, or maximum pixel luminance. According to the prediction model, the discomfort luminance level of a head-mounted display was represented as a positive linear function in log(10) units using the previous adaptation luminance when luminance is calculated as maximum area luminance
Transparent effect on the gray scale perception of a transparent OLED display
Gray scale perception of transparent OLED displays was explored. The difference in luminance between transparent and non-transparent stimuli in the overall gray range was compared. The transparent effect appeared in gray scale perception. The range of the transparent effect was determined experimentally. To explore the practical application of this effect, we proposed a new tone-curve based on the transparent effect. In the preference experiment, participants indicated a higher preference score for the new tone-curve. This implied that the transparent effect is valid and applicable to real situations
Contribution of coastal seiches to sediment transport in a microtidal semi-enclosed bay
Moorings and axial surveys using acoustic Doppler current profilers in microtidal Masan Bay were conducted to reveal impacts of coastal seiches on sediment behaviors. The hydrodynamic circulation in the bay was dominated by sluggish tidal and residual currents, with which the coastal seiches with a 1-h period were detected. The coastal seiches velocity (useiche) accounted for approximately 30% of the total velocities, causing back-and-forth water motions along the channel. This was insufficient to resuspend bed sediments without external forcings. Nevertheless, it influenced the suspended sediment concentration (SSC) of turbidity maximum (~40 mg lā1) at the central part of bay, showing SSC anomaly of 8 mg lā1. Although the seiche-induced sediment fluxes were only 1% of the total fluxes due to offsetting effect of bidirectional flows, they reached up to 0.040Ć10ā3 kg mā2 sā1 at each pulse of coastal seiches. Repetitive coastal seiches lifted the sediment particles to the upper layer where they would not have risen if not for seiche vertical motion. However, the distance that the coastal seiches can transport the suspended sediments was too short compared to their transportable amounts. Even if sediment particles within turbidity maximum were advected by coastal seiches, they could not leave the region. This process was intensified toward the land because the useiche slowed down the further as it moved away from the node. As long as the bed sediments were resuspended, the coastal seiches were expected to enhance the potential for water pollution by causing repetitive sediment redistribution
Experimental Investigation for Tensile Performance of GFRP-Steel Hybridized Rebar
Tensile performance of the recently developed āFRP Hybrid Barā at Korea Institute of Civil Engineering and Building Technology (KICT) is experimentally evaluated by the authors. FRP Hybrid Bar is introduced to overcome the low elastic modulus of the existing GFRP bars to be used as a structural member in reinforced concrete structures. The concept of material hybridization is applied to increase elastic modulus of GFRP bars by using steel. This hybridized GFRP bar can be used in concrete structures as a flexural reinforcement with a sufficient level of elastic modulus. In order to verify the effect of material hybridization on tensile properties, tensile tests are conducted. The test results for both FRP Hybrid Bar and the existing GFRP bars are compared. The results indicate that the elastic modulus of FRP Hybrid Bar can be enhanced by up to approximately 250 percent by the material hybridization with a sufficient tensile strength. To ensure the long-term durability of FRP Hybrid Bar to corrosion resistance, the individual and combined effects of environmental conditions on FRP Hybrid Bar itself as well as on the interface between rebar and concrete are currently under investigation
Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer
Magnetic skyrmions have fast evolved from a novelty, as a realization of
topologically protected structure with particle-like character, into a
promising platform for new types of magnetic storage. Significant engineering
progress was achieved with the synthesis of compounds hosting room-temperature
skyrmions in magnetic heterostructures, with the interfacial
Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation.
Here we report findings of ultrathin skyrmion formation in a few layers of
SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer.
Measurement of the topological Hall effect (THE) reveals a robust stability of
skyrmions in this platform, judging from the high value of the critical field
1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as
much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up
to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film
proves the rumpling of the Ru-O plane to be the source of inversion symmetry
breaking and DMI. First-principles calculations based on the structure obtained
from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the
main source of skyrmion robustness. These features promise a few-layer SRO to
be an important new platform for skyrmionics, without the necessity of
introducing the capping layer to boost the spin-orbit coupling strength
artificially.Comment: Supplementary Information available upon reques
Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer
Magnetic skyrmions have fast evolved from a novelty, as a realization of
topologically protected structure with particle-like character, into a
promising platform for new types of magnetic storage. Significant engineering
progress was achieved with the synthesis of compounds hosting room-temperature
skyrmions in magnetic heterostructures, with the interfacial
Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation.
Here we report findings of ultrathin skyrmion formation in a few layers of
SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer.
Measurement of the topological Hall effect (THE) reveals a robust stability of
skyrmions in this platform, judging from the high value of the critical field
1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as
much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up
to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film
proves the rumpling of the Ru-O plane to be the source of inversion symmetry
breaking and DMI. First-principles calculations based on the structure obtained
from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the
main source of skyrmion robustness. These features promise a few-layer SRO to
be an important new platform for skyrmionics, without the necessity of
introducing the capping layer to boost the spin-orbit coupling strength
artificially.Comment: Supplementary Information available upon reques
Rationale of decreasing low-density lipoprotein cholesterol below 70 mg/dL in patients with coronary artery disease: A retrospective virtual histology-intravascular ultrasound study
Background: The associations between statin and coronary plaque compositional changes were reĀported according to the use of high dose or not. An evaluation of the impact of low-density lipoprotein cholesterol (LDL-C) < 70 mg/dL by using real world dosages of statin on coronary plaque composition was undertaken.
Methods: The study subjects consisted of 61 patients (mean 59.9 years old, 45 males) who underwent percutaneous coronary intervention, baseline and follow-up (F/U; mean 8.4 months) virtual histology- -intravascular ultrasound (VH-IVUS) examination. Change of plaque composition at peri-stent area, which was selected in order to measure the identical site at F/U study, was compared according to the F/U LDL-C level.
Results: Body mass index, prevalence of dyslipidemia, baseline total cholesterol and baseline LDL-C were significantly lower in F/U LDL-C < 70 mg/dL group (14 segments in 10 patients) than F/U LDL-C ā„ 70 mg/dL group (79 segments in 51 patients). F/U high-density lipoprotein cholesterol (HDL-C, OR 1.06, 95% CI 1.00ā1.11, p = 0.054) and F/U LDL-C < 70 mg/dL (OR 3.43, 95% CI 0.97ā12.17, p = 0.056) showed strong tendency of regression of necrotic core volume (NCV) ā„ 10%. In multivariable logisĀtic regression analysis, F/U HDL-C (OR 1.07, 95% CI 1.01ā1.14, p = 0.020) and F/U LDL-C < 70 mg/dL (OR 8.02, 95% CI 1.58ā40.68, p = 0.012) were the independent factors for regression of NCV ā„ 10%.
Conclusions: Follow-up LDL-C level < 70 mg/dL with any types of statins and increase of HDL-C were associated with regression of NCV ā„ 10% in patients with coronary artery disease
Tau functions as Widom constants
We define a tau function for a generic Riemann-Hilbert problem posed on a
union of non-intersecting smooth closed curves with jump matrices analytic in
their neighborhood. The tau function depends on parameters of the jumps and is
expressed as the Fredholm determinant of an integral operator with block
integrable kernel constructed in terms of elementary parametrices. Its
logarithmic derivatives with respect to parameters are given by contour
integrals involving these parametrices and the solution of the Riemann-Hilbert
problem. In the case of one circle, the tau function coincides with Widom's
determinant arising in the asymptotics of block Toeplitz matrices. Our
construction gives the Jimbo-Miwa-Ueno tau function for Riemann-Hilbert
problems of isomonodromic origin (Painlev\'e VI, V, III, Garnier system, etc)
and the Sato-Segal-Wilson tau function for integrable hierarchies such as
Gelfand-Dickey and Drinfeld-Sokolov.Comment: 26 pages, 6 figure
Theoretical investigations on microwave Fano resonances in 3D-printable hollow dielectric resonators
High-index dielectric structures have recently been studied intensively for Mie resonances at optical frequencies. These dielectric structures can enable extreme light manipulation, similar to that which has been achieved with plasmonic nanostructures. In the microwave region, dielectric resonators and metamaterials can be fabricated directly using 3D printing, which is advantageous for fabricating structurally complicated 3D geometries. It is therefore especially suitable for the fabrication of subwavelength structures. Here we report theoretical investigations on microwave Fano resonances in 3D-printable dielectric materials and structures. In particular, we propose and analyse 3D-printable, hollow, dielectric resonators with relatively low refractive indices, which exhibit sharp Fano resonances. We can control the interaction between bright and dark modes in a coupled dielectric particle pair by adjusting the inner-hole size, and thus we can increase the radiative Q factors further. We also find that Fano resonances in these hollow dielectric resonators are very sensitive to an index change in the surrounding medium, which could be useful for long-distance environmental sensing. New possibilities and opportunities are opening up with the rapid development of 3D-printing technologies. Our findings and the detailed investigations reported here can provide useful guidelines for future photonic devices based on 3D-printable materials and structures
- ā¦