16,266 research outputs found

    The Record Breaking 42-day Balloon Flight of CREAM

    Get PDF

    Non-monotonic temperature dependent transport in graphene grown by Chemical Vapor Deposition

    Full text link
    Temperature-dependent resistivity of graphene grown by chemical vapor deposition (CVD) is investigated. We observe in low mobility CVD graphene device a strong insulating behavior at low temperatures and a metallic behavior at high temperatures manifesting a non-monotonic in the temperature dependent resistivity.This feature is strongly affected by carrier density modulation. To understand this anomalous temperature dependence, we introduce thermal activation of charge carriers in electron-hole puddles induced by randomly distributed charged impurities. Observed temperature evolution of resistivity is then understood from the competition among thermal activation of charge carriers, temperature-dependent screening and phonon scattering effects. Our results imply that the transport property of transferred CVD-grown graphene is strongly influenced by the details of the environmentComment: 7 pages, 3 figure

    Tuning electronic structures via epitaxial strain in Sr2IrO4 thin films

    Get PDF
    We have synthesized epitaxial Sr2IrO4 thin-films on various substrates and studied their electronic structures as a function of lattice-strains. Under tensile (compressive) strains, increased (decreased) Ir-O-Ir bond-angles are expected to result in increased (decreased) electronic bandwidths. However, we have observed that the two optical absorption peaks near 0.5 eV and 1.0 eV are shifted to higher (lower) energies under tensile (compressive) strains, indicating that the electronic-correlation energy is also affected by in-plane lattice-strains. The effective tuning of electronic structures under lattice-modification provides an important insight into the physics driven by the coexisting strong spin-orbit coupling and electronic correlation.Comment: 9 pages, 5 figures, 1 tabl

    Asynchronous Graph Pattern Matching on Multiprocessor Systems

    Full text link
    Pattern matching on large graphs is the foundation for a variety of application domains. Strict latency requirements and continuously increasing graph sizes demand the usage of highly parallel in-memory graph processing engines that need to consider non-uniform memory access (NUMA) and concurrency issues to scale up on modern multiprocessor systems. To tackle these aspects, graph partitioning becomes increasingly important. Hence, we present a technique to process graph pattern matching on NUMA systems in this paper. As a scalable pattern matching processing infrastructure, we leverage a data-oriented architecture that preserves data locality and minimizes concurrency-related bottlenecks on NUMA systems. We show in detail, how graph pattern matching can be asynchronously processed on a multiprocessor system.Comment: 14 Pages, Extended version for ADBIS 201

    Charge Fluctuations in Geometrically Frustrated Charge Ordering System

    Full text link
    Effects of geometrical frustration in low-dimensional charge ordering systems are theoretically studied, mainly focusing on dynamical properties. We treat extended Hubbard models at quarter-filling, where the frustration arises from competing charge ordered patterns favored by different intersite Coulomb interactions, which are effective models for various charge transfer-type molecular conductors and transition metal oxides. Two different lattice structures are considered: (a) one-dimensional chain with intersite Coulomb interaction of nearest neighbor V_1 and that of next-nearest neighbor V_2, and (b) two-dimensional square lattice with V_1 along the squares and V_2 along one of the diagonals. From previous studies, charge ordered insulating states are known to be unstable in the frustrated region, i.e., V_1 \simeq 2V_2 for case (a) and V_1 \simeq V_2 for case (b), resulting in a robust metallic phase even when the interaction strenghs are strong. By applying the Lanczos exact diagonalization to finite-size clusters, we have found that fluctuations of different charge order patterns exist in the frustration-induced metallic phase, showing up as characteristic low energy modes in dynamical correlation functions. Comparison of such features between the two models are discussed, whose difference will be ascribed to the dimensionality effect. We also point out incommensurate correlation in the charge sector due to the frustration, found in one-dimensional clusters.Comment: 8 pages, 9 figure

    Effects of pressure on the ferromagnetic state of the CDW compound SmNiC2

    Full text link
    We report the pressure response of charge-density-wave (CDW) and ferromagnetic (FM) phases of the rare-earth intermetallic SmNiC2 up to 5.5 GPa. The CDW transition temperature (T_{CDW}), which is reflected as a sharp inflection in the electrical resistivity, is almost independent of pressure up to 2.18 GPa but is strongly enhanced at higher pressures, increasing from 155.7 K at 2.2 GPa to 279.3 K at 5.5 GPa. Commensurate with the sharp increase in T_{CDW}, the first-order FM phase transition, which decreases with applied pressure, bifurcates into the upper (T_{M1}) and lower (T_c) phase transitions and the lower transition changes its nature to second order above 2.18 GPa. Enhancement both in the residual resistivity and the Fermi-liquid T^2 coefficient A near 3.8 GPa suggests abundant magnetic quantum fluctuations that arise from the possible presence of a FM quantum critical point.Comment: 5 pages, 5 figure

    Singlet superfield extension of the minimal supersymmetric standard model with Peccei-Quinn symmetry and a light pseudoscalar Higgs boson at the LHC

    Full text link
    Motivated by the mu-problem and the axion solution to the strong CP-problem, we extend the MSSM with one more chiral singlet field XeX_e. The underlying PQ-symmetry allows only one more term XeHuHdX_e H_u H_d in the superpotential. The spectrum of the Higgs system includes a light pseudoscalar aXa_X (in addition to the standard CP-even Higgs boson), predominantly decaying to two photons: aXγγa_X \to \gamma \gamma. Both Higgs bosons might be in the range accessible to current LHC experiments.Comment: 5 pages with 3 figure
    corecore