3,394 research outputs found

    Investigating the relationship between supply chain innovation, risk management capabilities and competitive advantage in global supply chains

    Get PDF
    Purpose- This study aims to propose and validate a theoretical model to investigate whether supply chain innovation positively affects risk management capabilities, such as robustness and resilience in global supply chain operations, and to examine how these capabilities may improve competitive advantage. Design/methodology/approach- A theoretical model was developed from extant studies and assessed through the development of a large-scale questionnaire survey conducted with South Korean manufacturers and logistics intermediaries involved in global supply chain operations. The data were analysed using confirmatory factor analysis (CFA) and structural equation modelling (SEM) to validate the suggested model. Findings- It was found that innovative supply chains have a discernible positive influence on all dimensions of risk management capability, which in turn has a significant impact on enhancing competitive advantage. Therefore, this work provides evidence for the importance of supply chain innovation and risk management capability in supporting competitive advantage. Research limitations/implications- This study contributes to providing an empirical understanding of the strategic retention of supply chain innovation and risk management capabilities in the supply chain management (SCM) discipline. Further, it confirms and expands existing theories about innovation and competitive advantage. Practical implications- The finding provides firm grounds for managerial decisions on investment in technology innovation and process innovation. Originality/value- This research is the first of its kind to empirically validate the relationships between supply chain innovation, risk management capabilities and competitive advantage. Keywords: Supply Chain Innovation, Robustn

    Recombinant mussel proximal thread matrix protein promotes osteoblast cell adhesion and proliferation

    Get PDF
    BACKGROUND: von Willebrand factor (VWF) is a key load bearing domain for mamalian cell adhesion by binding various macromolecular ligands in extracellular matrix such as, collagens, elastin, and glycosaminoglycans. Interestingly, vWF like domains are also commonly found in load bearing systems of marine organisms such as in underwater adhesive of mussel and sea star, and nacre of marine abalone, and play a critical load bearing function. Recently, Proximal Thread Matrix Protein1 (PTMP1) in mussel composed of two vWF type A like domains has characterized and it is known to bind both mussel collagens and mammalian collagens. RESULTS: Here, we cloned and mass produced a recombinant PTMP1 from E. coli system after switching all the minor codons to the major codons of E. coli. Recombinant PTMP1 has an ability to enhance mouse osteoblast cell adhesion, spreading, and cell proliferation. In addition, PTMP1 showed vWF-like properties as promoting collagen expression as well as binding to collagen type I, subsequently enhanced cell viability. Consequently, we found that recombinant PTMP1 acts as a vWF domain by mediating cell adhesion, spreading, proliferation, and formation of actin cytoskeleton. CONCLUSIONS: This study suggests that both mammalian cell adhesion and marine underwater adhesion exploits a strong vWF-collagen interaction for successful wet adhesion. In addition, vWF like domains containing proteins including PTMP1 have a great potential for tissue engineering and the development of biomedical adhesives as a component for extra-cellular matrix

    Digital Hologram Coding

    Get PDF

    Prediction of Individual Propofol Requirements based on Preoperative EEG Signals

    Full text link
    The patient must be given an adequate amount of propofol for safe surgery since overcapacity and low capacity cause accidents. However, the sensitivity of propofol varies from patient to patient, making it very difficult to determine the propofol requirements for anesthesia. This paper aims to propose a neurophysiological predictor of propofol requirements based on the preoperative electroencephalogram (EEG). We exploited the canonical correlation analysis that infers the amount of information on the propofol requirements. The results showed that the preoperative EEG included the factor that could explain the propofol requirements. Specifically, the frontal and posterior regions had crucial information on the propofol requirements. Moreover, there was a significantly different power in the frontal and posterior regions between baseline and unconsciousness periods, unlike the alpha power in the central region. These findings showed the potential that preoperative EEG could predict the propofol requirements.Comment: 5 pages, 1 figure, 1 tabl

    Detailed Human-Centric Text Description-Driven Large Scene Synthesis

    Full text link
    Text-driven large scene image synthesis has made significant progress with diffusion models, but controlling it is challenging. While using additional spatial controls with corresponding texts has improved the controllability of large scene synthesis, it is still challenging to faithfully reflect detailed text descriptions without user-provided controls. Here, we propose DetText2Scene, a novel text-driven large-scale image synthesis with high faithfulness, controllability, and naturalness in a global context for the detailed human-centric text description. Our DetText2Scene consists of 1) hierarchical keypoint-box layout generation from the detailed description by leveraging large language model (LLM), 2) view-wise conditioned joint diffusion process to synthesize a large scene from the given detailed text with LLM-generated grounded keypoint-box layout and 3) pixel perturbation-based pyramidal interpolation to progressively refine the large scene for global coherence. Our DetText2Scene significantly outperforms prior arts in text-to-large scene synthesis qualitatively and quantitatively, demonstrating strong faithfulness with detailed descriptions, superior controllability, and excellent naturalness in a global context

    Experimental Investigation for Tensile Performance of GFRP-Steel Hybridized Rebar

    Get PDF
    Tensile performance of the recently developed “FRP Hybrid Bar” at Korea Institute of Civil Engineering and Building Technology (KICT) is experimentally evaluated by the authors. FRP Hybrid Bar is introduced to overcome the low elastic modulus of the existing GFRP bars to be used as a structural member in reinforced concrete structures. The concept of material hybridization is applied to increase elastic modulus of GFRP bars by using steel. This hybridized GFRP bar can be used in concrete structures as a flexural reinforcement with a sufficient level of elastic modulus. In order to verify the effect of material hybridization on tensile properties, tensile tests are conducted. The test results for both FRP Hybrid Bar and the existing GFRP bars are compared. The results indicate that the elastic modulus of FRP Hybrid Bar can be enhanced by up to approximately 250 percent by the material hybridization with a sufficient tensile strength. To ensure the long-term durability of FRP Hybrid Bar to corrosion resistance, the individual and combined effects of environmental conditions on FRP Hybrid Bar itself as well as on the interface between rebar and concrete are currently under investigation

    Methyl 4-(β-D-glucopyranosyloxy)-3-hydroxy-5- methoxybenzoate, isolated from Sanguisorba officinalis, inhibits CpG-DNA-induced inflammation

    Get PDF
    Purpose: To evaluate the anti-inflammatory effect of methyl-4-(β-D-glucopyranosyloxy)-3-hydroxy-5-methoxybenzoate (comp-1) on immune cells.Methods: Comp-1 was isolated from Sanguisorba officinalis. After treating with comp-1, cell viability and levels of pro-inflammatory cytokines were assessed utilizing MTT assay and ELISA, respectively. Besides, the effects of comp-1 on nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and iNOS were determined using western blotting. Moreover, nitric oxide production was assessed using the Griess reagent.Results: Treatment of dendritic cells (DCs) with CpG DNA upregulated cytokine expression. Comp-1 markedly downregulated the expressions of IL-12 p40, IL-6, and TNF-α, with 50% inhibitory concentrations (IC50) of 1.077 ± 0.04 (p < 0.01), 0.28 ± 0.01 (p < 0.01), and 0.79 ± 0.02 μM (p < 0.01),respectively. Treatment of DCs with CpG DNA upregulated NF-κB and MAPK activation. However, pretreatment of the cells with Comp-1 suppressed CpG DNA-induced NF-κB and MAPK activation. Moreover, comp-1 exhibited a strong anti-inflammatory effect by inhibiting nitric oxide production and iNOS expression.Conclusion: These results reveal that comp-1 has significant anti-inflammatory effect on immune cells. Keywords: Natural compound, Inflammation, Pro-inflammatory cytokine, Toll-like receptor
    corecore