300 research outputs found

    Charge-flow structures as polymeric early-warning fire alarm devices

    Get PDF
    The charge-flow transistor (CFT) and its applications for fire detection and gas sensing were investigated. The utility of various thin film polymers as possible sensing materials was determined. One polymer, PAPA, showed promise as a relative humidity sensor; two others, PFI and PSB, were found to be particularly suitable for fire detection. The behavior of the charge-flow capacitor, which is basically a parallel-plate capacitor with a polymer-filled gap in the metallic tip electrode, was successfully modeled as an RC transmission line. Prototype charge-flow transistors were fabricated and tested. The effective threshold voltage of this metal oxide semiconductor was found to be dependent on whether surface or bulk conduction in the thin film was dominant. Fire tests with a PFI-coated CFT indicate good sensitivity to smouldering fires

    A chromatographic analysis of the response of polymeric fire-detection devices to combustion products

    Get PDF
    Polymer responses to a variety of smouldering sources, including cellulose, acrylic, urethane, polyvinyl chloride, and wool were investigated. A suitable trapping system for combustion products was developed and a charge flow transistor was fabricated to monitor the transverse or sheet resistance of a thin film

    High intermodulation gain in a micromechanical Duffing resonator

    Full text link
    In this work we use a micromechanical resonator to experimentally study small signal amplification near the onset of Duffing bistability. The device consists of a PdAu beam serving as a micromechanical resonator excited by an adjacent gate electrode. A large pump signal drives the resonator near the onset of bistability, enabling amplification of small signals in a narrow bandwidth. To first order, the amplification is inversely proportional to the frequency difference between the pump and signal. We estimate the gain to be about 15dB for our device

    Measuring Charge Transport in an Amorphous Semiconductor Using Charge Sensing

    Full text link
    We measure charge transport in hydrogenated amorphous silicon (a-Si:H) using a nanometer scale silicon MOSFET as a charge sensor. This charge detection technique makes possible the measurement of extremely large resistances. At high temperatures, where the a-Si:H resistance is not too large, the charge detection measurement agrees with a direct measurement of current. The device geometry allows us to probe both the field effect and dispersive transport in the a-Si:H using charge sensing and to extract the density of states near the Fermi energy.Comment: 4 pages, 4 figure

    Measurement of the Casimir force between dissimilar metals

    Get PDF
    The first precise measurement of the Casimir force between dissimilar metals is reported. The attractive force, between a Cu layer evaporated on a microelectromechanical torsional oscillator, and an Au layer deposited on an Al2_2O3_3 sphere, was measured dynamically with a noise level of 6 fN/Hz\sqrt{\rm{Hz}}. Measurements were performed for separations in the 0.2-2 ÎĽ\mum range. The results agree to better than 1% in the 0.2-0.5 ÎĽ\mum range with a theoretical model that takes into account the finite conductivity and roughness of the two metals. The observed discrepancies, which are much larger than the experimental precision, can be attributed to a lack of a complete characterization of the optical properties of the specific samples used in the experiment.Comment: 6 pages, 4 figure

    Modeling Single Electron Transfer in Si:P Double Quantum Dots

    Full text link
    Solid-state systems such as P donors in Si have considerable potential for realization of scalable quantum computation. Recent experimental work in this area has focused on implanted Si:P double quantum dots (DQDs) that represent a preliminary step towards the realization of single donor charge-based qubits. This paper focuses on the techniques involved in analyzing the charge transfer within such DQD devices and understanding the impact of fabrication parameters on this process. We show that misalignment between the buried dots and surface gates affects the charge transfer behavior and identify some of the challenges posed by reducing the size of the metallic dot to the few donor regime.Comment: 11 pages, 7 figures, submitted to Nanotechnolog

    Fabrication and characterisation of nanocrystalline graphite MEMS resonators using a geometric design to control buckling

    Get PDF
    The simulation, fabrication and characterisation of nanographite MEMS resonators is reported in this paper. The deposition of nanographite is achieved using plasma-enhanced chemical vapour deposition directly onto numerous substrates such as commercial silicon wafers. As a result, many of the reliability issues of devices based on transferred graphene are avoided. The fabrication of the resonators is presented along with a simple undercutting method to overcome buckling, by changing the effective stress of the structure from 436 MPa compressive, to 13 MPa tensile. The characterisation of the resonators using electrostatic actuation and laser Doppler vibrometry is reported, demonstrating resonator frequencies from 5–640 kHz and quality factor above 1819 in vacuum obtained

    An excitable electronic circuit as a sensory neuron model

    Get PDF
    An electronic circuit device, inspired on the FitzHugh-Nagumo model of neuronal excitability, was constructed and shown to operate with characteristics compatible with those of biological sensory neurons. The nonlinear dynamical model of the electronics quantitatively reproduces the experimental observations on the circuit, including the Hopf bifurcation at the onset of tonic spiking. Moreover, we have implemented an analog noise generator as a source to study the variability of the spike trains. When the circuit is in the excitable regime, coherence resonance is observed. At sufficiently low noise intensity the spike trains have Poisson statistics, as in many biological neurons. The transfer function of the stochastic spike trains has a dynamic range of 6 dB, close to experimental values for real olfactory receptor neurons.Comment: 10 pages, 6 figure

    Scalable design of an IMS cross-flow micro-generator/ion detector

    Full text link
    Ion-mobility spectrometry (IMS) is an analytical technique used to separate and identify ionized gas molecules based on their mobility in a carrier buffer gas. Such methods come in a large variety of versions that currently allow ion identification at and above the millimeter scale. Here, we present a design for a cross-flow-IMS method able to generate and detect ions at the sub-millimeter scale. We propose a novel ion focusing strategy and tested it in a prototype device using Nitrogen as a sample gas, and also with simulations using four different sample gases. By introducing an original lobular ion generation localized to a few ten of microns and substantially simplifying the design, our device is able to keep constant laminar flow conditions for high flow rates. In this way, it avoids the turbulences in the gas flow, which would occur in other ion-focusing cross-flow methods limiting their performance at the sub-millimeter scale. Scalability of the proposed design can contribute to improve resolving power and resolution of currently available cross-flow methods.Comment: 14 pages, 10 figures, revised regular paper, minor correction
    • …
    corecore