27 research outputs found

    New routes for allergen immunotherapy

    Full text link
    IgE-mediated allergy is a highly prevalent disease in the industrialized world. Allergen-specific immunotherapy (SIT) should be the preferred treatment, as it has long lasting protective effects and can stop the progression of the disease. However, few allergic patients choose to undergo SIT, due to the long treatment time and potential allergic adverse events. Since the beneficial effects of SIT are mediated by antigen presenting cells inducing Th1, Treg and antibody responses, whereas the adverse events are caused by mast cells and basophils, the therapeutic window of SIT may be widened by targeting tissues rich in antigen presenting cells. Lymph nodes and the epidermis contain high density of dendritic cells and low numbers of mast cells and basophils. The epidermis has the added benefit of not being vascularised thereby reducing the chances of anaphylactic shock due to leakage of allergen. Hence, both these tissues represent highly promising routes for SIT and are the focus of discussion in this review

    Intralymphatic Immunotherapy (ILIT) With Bee Venom Allergens: A Clinical Proof-of-Concept Study and the Very First ILIT in Humans

    Full text link
    BackgroundSubcutaneous venom immunotherapy (VIT) represents an effective treatment against bee venom allergy. However, it involves long treatment times, high costs, and the risk of adverse events (AEs). Shorter, safer, and cheaper treatment options are therefore pursued.ObjectiveTo determine the safety, immunogenicity, and efficacy of bee venom intralymphatic immunotherapy (ILIT).MethodsIn an open pilot study, 12 patients received bee venom ILIT in three sessions with 14-day intervals: 0.1–5 μg/dose. Ultrasound imaging was applied to guide an injection and to document the lymph node structure. In a second study, 67 patients from 15 centers in Europe and Australia were randomized to receive four doses of either 10- or 20-μg bee venom ILIT with 28-day intervals. Clinical endpoints included specific IgE and IgG and protection after a bee sting challenge. These studies were performed in the years 2000–2003.ResultsIn a proof-of-concept study, no serious AEs were observed. An increase in allergen-specific IgG1 but no IgG4 and IgE was observed. ILIT induced the protection against a bee sting challenge in 7 out of 8 challenged patients. In a multicenter study, an increase in allergen-specific IgG and IgE was observed, with the highest increase in patients receiving a higher ILIT dose. The study was terminated due to several serious AEs upon the sting challenge provocation after the completion of treatment. However, out of 45 patients challenged, 15 (65%) and 18 (82%) patients in the 10- and 20-μg group, respectively, showed an improvement of two grades or more. No correlation was observed between antibody levels and sting protection.ConclusionsWhile a pilot study suggested the safety and efficacy of bee venom ILIT, a high number of AEs seen after the sting challenge following a randomized study indicate that the immunology protection offered by bee venom ILIT is insufficient. Of note, the bee venom allergen extract used in the two studies were from the two different providers. While the first study used a formulation approved for use in subcutaneous VIT, the second study used a nonapproved formulation never tested in humans. Further studies on approved formulations should be performed to generate conclusive results regarding the safety and efficacy of bee venom ILIT

    COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation.

    Get PDF
    Switzerland is among the countries with the highest number of coronavirus disease-2019 (COVID-19) cases per capita in the world. There are likely many people with undetected SARS-CoV-2 infection because testing efforts are currently not detecting all infected people, including some with clinical disease compatible with COVID-19. Testing on its own will not stop the spread of SARS-CoV-2. Testing is part of a strategy. The World Health Organization recommends a combination of measures: rapid diagnosis and immediate isolation of cases, rigorous tracking and precautionary self-isolation of close contacts. In this article, we explain why the testing strategy in Switzerland should be strengthened urgently, as a core component of a combination approach to control COVID-19

    Novel delivery routes for allergy immunotherapy

    Full text link
    Current allergy immunotherapy protocols suffer from two main problems: long treatment duration and systemic allergic side effects of the allergen administrations. The immunologic effects of allergen administration could be enhanced and the number of allergen administrations and treatment duration reduced by choosing a tissue for administration that contains a high density of antigen-presenting cells. Local side effects could be reduced by choosing a route characterized by a low density of mast cells, and systemic side effects could be reduced by administration to nonvascularized tissues, so that inadvertent systemic distribution of the allergen and consequent systemic allergic side effects are minimized

    Intralymphatic immunotherapy

    Get PDF
    Gold Standard allergen-specific immunotherapy is associated with low efficacy because it requires either many subcutaneous injections of allergen or even more numerous sublingual allergen administrations to achieve amelioration of symptoms. Intralymphatic vaccination can maximize immunogenicity and hence efficacy. We and others have demonstrated that as few as three low dose intralymphatic allergen administrations are sufficient to effectively alleviate symptoms. Results of recent prospective and controlled trials suggest that this strategy may be an effective form of allergen immunotherapy. Keywords: Administration routes, Allergen immunotherapy, Intralympathic, Vaccinatio

    Epicutaneous immunotherapy for aeroallergen and food allergy

    Get PDF
    IgE-mediated allergies today affect up to 30 % of the population in industrialized countries. Allergen immunotherapy is the only disease-modifying treatment option with a long-term effect. However, very few patients (<5 %) choose immunotherapy, due to the long treatment duration (between 3-5 years) and possible local and systemic allergic side effects of the allergen administrations. The latter occur when an allergen accidentally reaches the blood circulation. Therefore, the ideal application route for allergen immunotherapy should be characterized by two hallmarks: firstly, by a high number of potent antigen-presenting cells, which enhance efficacy and thus shorten treatment duration. Secondly, the allergen administration site is ideally non-vascularized, so that inadvertent systemic distribution of the allergen and consequent systemic allergic side effects are minimized. The epidermis contains high numbers of potent antigen-presenting Langerhans cells and, as an epithelium, is non-vascularized. Therefore, the epidermis represents an interesting administration route. Historical evidence for the clinical efficacy of epicutaneous allergy immunotherapy (EPIT) has now been strengthened by a number of recent double-blinded placebo-controlled clinical trials performed by independent groups. We review the immunological rationale, history and clinical experience with epicutaneous allergy immunotherapy

    Immunotherapy of type-1 allergies with virus-like particles and CpG-motifs

    Full text link
    Immunotherapy of type-I-allergies is regarded as the most efficient treatment option besides allergen avoidance. Different forms of allergen preparations are used as well as different routes of application. Virus-like particles represent a potent vaccine platform with proven immunogenicity and clinical efficacy. The addition of toll-like receptor ligands and/or depot-forming adjuvants further enhances immune cell activation. This article will focus on the function of virus-like particles loaded with DNA rich in CpG-motifs and discuss clinical experience in treatment of allergic rhinitis. Evidence will be presented that clinically effective treatment can be obtained even in the absence of allergens. Results encourage further investigation of virus-like particles and CpG-motifs in immunotherapy, either as a stand alone product, or as adjuvants for allergen-specific immunotherapy

    Allergen immunotherapy in allergic rhinitis: current use and future trends

    Full text link
    INTRODUCTION: Type-1 allergies are among the most chronic common diseases of humans. Allergen immunotherapy (AIT) is the only causative and disease-modifying treatment option besides allergen avoidance. Severe systemic adverse allergic reactions may be induced by every AIT treatment. Different approaches have been used to provide safer AIT preparations to lower or even totally overcome this risk. Areas covered: A structured literature recherche in Medline and Pubmed under inclusion of national and international guidelines and Cochrane meta-analyses has been performed aiming at reviewing clinical use of such approaches in AIT. New allergen preparations may include allergoids, recombinant allergens (recA) and modified recombinant allergens (recA) in subcutaneous as well as in mucosal immunotherapies (application e.g. using bronchial, nasal, oral and sublingual application) with sublingual being the established mucosal application route and new ways of application like intralymphatic and epicutaneous immunotherapy. Expert commentary: Immune-modifying agents like Virus-like particles and CpG-motifs, adjuvants like MPL and aluminum hydroxide are evaluated and found to increase and direct the immunological response toward immunological tolerance. New forms of allergen extracts can improve safety and efficacy of AIT and may change our way of performing allergen immunotherapy in the future

    Is The Allergen Really Needed in Allergy Immunotherapy?

    Get PDF
    Immunotherapy for type I allergies is well established and is regarded to be the most efficient treatment option besides allergen avoidance. As of today, different forms of allergen preparations are used in this regard, as well as different routes of application. Virus-like particles (VLPs) represent a potent vaccine platform with proven immunogenicity and clinical efficacy. The addition of toll-like receptor ligands and/or depot-forming adjuvants further enhances activation of innate as well as adaptive immune responses. CpG motifs represent intensively investigated and potent direct stimulators of plasmacytoid dendritic cells and B cells, while T cell responses are enhanced indirectly through increased antigen presentation and cytokine release. This article will focus on the function of VLPs loaded with DNA rich in nonmethylated CG motifs (CpGs) and the clinical experience gained in the treatment of allergic rhinitis, demonstrating clinical efficacy also if administered without allergens. Several published studies have demonstrated a beneficial impact on allergic symptoms by treatment with CpG-loaded VLPs. Subcutaneous injection of VLPs loaded with CpGs was tested with or without the adjuvant alum in the presence or absence of an allergen. The results encourage further investigation of VLPs and CpG motifs in immunotherapy, either as a stand-alone product or as adjuvants for allergen-specific immunotherapy
    corecore