12 research outputs found

    A Comparative Genome-Wide Transcriptome Analysis of Glucocorticoid Responder and Non-Responder Primary Human Trabecular Meshwork Cells

    Get PDF
    Aim: To investigate genes and pathways involved in differential glucocorticoid (GC) responsiveness in human trabecular meshwork (HTM) cells using RNA sequencing. Methods: Using paired human donor eyes, human organ-cultured anterior segment (HOCAS) was established in one eye to characterize GC responsiveness based on intra ocular pressure (IOP) change and, in the other eye, primary HTM cell culture was established. For RNA sequencing, total RNA extracted from GC-responder (GC-R) and non-responder (GC-NR) cells after dexamethasone (DEX) or ethanol (ETH) treatment for 7d was used. Differentially expressed genes (DEGs) were compared among five groups and validated. Results: In total, 616 and 216 genes were identified as significantly dysregulated in Group #1 and #2 (#1: ETH vs. DEX-treated GC-R; #2: ETH vs. DEX-treated GC-NR), respectively. Around 80 genes were commonly dysregulated in Group #3 (overlapping DEGs between #1 and #2), whereas 536 and 136 genes were uniquely expressed in GC-R (#4) and GC-NR HTM (#5) cells, respectively. Pathway analysis revealed that WNT signaling, drug metabolism cytochrome p450, cell adhesion, TGF-β signaling, and MAPK signaling were associated with GC responsiveness. Conclusion: This is the first study reporting distinct gene signatures and their associated pathways for GC-R and GC-NR HTM cells. WNT and MAPK signaling are potential therapeutic targets for the management of GC-induced glaucoma

    Short and long-term effect of dexamethasone on the transcriptome profile of primary human trabecular meshwork cells in vitro

    Get PDF
    In the quest of identifying newer molecular targets for the management of glucocorticoid-induced ocular hypertension (GC-OHT) and glaucoma (GCG), several microarray studies have attempted to investigate the genome-wide transcriptome profiling of primary human trabecular meshwork (TM) cells in response to dexamethasone (DEX). However, no studies are reported so far to demonstrate the temporal changes in the expression of genes in the cultured human TM cells in response to DEX treatment. Therefore, in the present study, the time-dependent changes in the genome-wide expression of genes in primary human TM cells after short (16 hours: 16 h) and long exposure (7 days: 7 d) of DEX was investigated using RNA sequencing. There were 199 (118 up-regulated; 81 down-regulated) and 525 (119 up-regulated; 406 down-regulated) DEGs in 16 h and 7 d treatment groups respectively. The unique genes identified in 16 h and 7 d treatment groups were 152 and 478 respectively. This study found a distinct gene signature and pathways between two treatment regimes. Longer exposure of DEX treatment showed a dys-regulation of Wnt and Rap1 signaling and so highlighted potential therapeutic targets for pharmacological management of GC-OHT/glaucoma

    Ocular hypotensives and neuroprotectans in glaucoma

    No full text
    These keywords were added by machine and not by the authors.International audienceGlaucoma is the leading cause of blindness in the world. It is an optic neuropathy disease associated with elevated intraocular pressure. Glaucoma encompass a group of various clinical presentations that share the same anatomical feature, a progressive loss of retinal ganglion cells (RGCs) superior to the age-related loss. This chapter deals about the pharmacology of conventional antiglaucoma drugs and newer drugs/pathways which are under investigation. Medical management of glaucoma has been discussed with the concept of reaching target intraocular pressure (“Target IOP”) using pharmacological agents. Newer concept of neuro-protectants for the management of glaucoma has also been included in the deliberations

    Human amniotic membrane as a drug carrier – An in-vitro study using fortified cefazolin ophthalmic solution

    No full text
    Purpose: Our previous study demonstrated the drug reservoir function of human amniotic membrane (HAM) using stable moxifloxacin as a model drug. The purpose of the present study is to evaluate whether HAM can be used as a drug carrier for extended release of extemporaneous preparation of cefazolin. Methods: HAM Buttons (1 Control, 5 Test) were incubated in a freshly prepared (1 ml) sterile topical solution of cefazolin 5% (w/v) for 3 h and 24 h at two different temperatures. The groups were designated as follows: Group IA: Soaking duration 3 h at 4°C; Group IB: Soaking duration 3 h at room temperature; Group IIA: Soaking duration 24 h at 4°C; and Group IIB: Soaking duration 24 h at room temperature. The release kinetics of cefazolin from different groups of drug-laden HAM was studied for a period of 5 days. Samples were assayed for estimation of cefazolin content at different time intervals by High Performance Liquid Chromatography (HPLC) with Photodiode array (PDA) detector. Results: Three-hour cefazolin treatment with HAM at 4°C caused high drug entrapment (24%) compared to room temperature (11%; P < 0.005); however, the release kinetics was not significantly different between Group IA and IB as well as Group IIA and IIB up to the study period. Increase in drug treatment duration did not show increase in entrapment, but caused two-fold (IA Vs IIA) and 1.6-fold (IB Vs IIB) less drug entrapment at 4°C and room temperature, respectively. Conclusion: The results reveal that HAM may be a suitable drug carrier for extended delivery of fortified formulations without compromising stability
    corecore