63 research outputs found
Phase control and measurement in digital microscopy
The ongoing merger of the digital and optical components of the modern microscope is creating opportunities for new measurement techniques, along with new challenges for optical modelling. This thesis investigates several such opportunities and challenges which are particularly relevant to biomedical imaging. Fourier optics is used throughout the thesis as the underlying conceptual model, with a particular emphasis on three--dimensional Fourier optics. A new challenge for optical modelling provided by digital microscopy is the relaxation of traditional symmetry constraints on optical design. An extension of optical transfer function theory to deal with arbitrary lens pupil functions is presented in this thesis. This is used to chart the 3D vectorial structure of the spatial frequency spectrum of the intensity in the focal region of a high aperture lens when illuminated by linearly polarised beam. Wavefront coding has been used successfully in paraxial imaging systems to extend the depth of field. This is achieved by controlling the pupil phase with a cubic phase mask, and thereby balancing optical behaviour with digital processing. In this thesis I present a high aperture vectorial model for focusing with a cubic phase mask, and compare it with results calculated using the paraxial approximation. The effect of a refractive index change is also explored. High aperture measurements of the point spread function are reported, along with experimental confirmation of high aperture extended depth of field imaging of a biological specimen. Differential interference contrast is a popular method for imaging phase changes in otherwise transparent biological specimens. In this thesis I report on a new isotropic algorithm for retrieving the phase from differential interference contrast images of the phase gradient, using phase shifting, two directions of shear, and non--iterative Fourier phase integration incorporating a modified spiral phase transform. This method does not assume that the specimen has a constant amplitude. A simulation is presented which demonstrates good agreement between the retrieved phase and the phase of the simulated object, with excellent immunity to imaging noise
Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI
A growing number of artificial intelligence (AI)-based clinical decision support systems are showing promising performance in preclinical, in silico, evaluation, but few have yet demonstrated real benefit to patient care. Early stage clinical evaluation is important to assess an AI system’s actual clinical performance at small scale, ensure its safety, evaluate the human factors surrounding its use, and pave the way to further large scale trials. However, the reporting of these early studies remains inadequate. The present statement provides a multistakeholder, consensus-based reporting guideline for the Developmental and Exploratory Clinical Investigations of DEcision support systems driven by Artificial Intelligence (DECIDE-AI). We conducted a two round, modified Delphi process to collect and analyse expert opinion on the reporting of early clinical evaluation of AI systems. Experts were recruited from 20 predefined stakeholder categories. The final composition and wording of the guideline was determined at a virtual consensus meeting. The checklist and the Explanation & Elaboration (E&E) sections were refined based on feedback from a qualitative evaluation process. 123 experts participated in the first round of Delphi, 138 in the second, 16 in the consensus meeting, and 16 in the qualitative evaluation. The DECIDE-AI reporting guideline comprises 17 AI specific reporting items (made of 28 subitems) and 10 generic reporting items, with an E&E paragraph provided for each. Through consultation and consensus with a range of stakeholders, we have developed a guideline comprising key items that should be reported in early stage clinical studies of AI-based decision support systems in healthcare. By providing an actionable checklist of minimal reporting items, the DECIDE-AI guideline will facilitate the appraisal of these studies and replicability of their findings
a) Die Abgrenzung der Begriffe essentia, substantia, subsistentia und persona nach I Sent, d.23 a. 1 q.3
ChemInform Abstract: OXIDATION OF COMPLETE METHYL ETHERS OF METHYLGLYCOPYRANOSIDES BY CHROMIC ANHYDRIDE
- …
