737 research outputs found

    Development and distribution of the non-indigenous Pacific oyster (Crassostrea gigas) in the Dutch Wadden Sea

    Get PDF
    Pacific oysters (Crassostrea gigas) were first observed in the Dutch Wadden Sea near Texel in 1983. The population increased slowly in the beginning but grew exponentially from the mid-1990s onwards, although now some stabilisation seems to be occurring. They occur on a variety of substrates such as mussel beds (Mytilus edulis), shell banks, dikes and poles. After initial settlement spat may fall on older individuals and congregate to dense clumps and subsequently form reefs. Individual Pacific oysters grow 3–4 cm long in their first year and 2–3 cm in their second year. Many mussel beds (Mytilus edulis) are slowly taken over by Pacific oysters, but there are also several reports of mussel spat settling on Pacific oyster reefs. This might in the end result in combined reefs. Successful Pacific oyster spat fall seems to be related to high summer temperatures, but also after mild summers much spat can be found on old (Pacific oyster) shells. Predation is of limited importance. Mortality factors are unknown, but every now and then unexplained mass mortality occurs. The gradual spread of the Pacific oyster in the Dutch Wadden Sea is documented in the first instance based on historical and anecdotal information. At the start of the more in-depth investigation in 2002, Pacific oysters of all size classes were already present near Texel. Near Ameland the development could be followed from the first observed settlement. On dense reefs each square metre may contain more than 500 adult Pacific oysters, weighing more than 100 kg per m² fresh weigh

    Safety of sublingual-swallow immunotherapy in children aged 3 to 7 years

    Get PDF
    The minimum age to start specific immunotherapy with inhalant allergens in children has not been clearly established, and position papers discourage its use in children younger than 5 years

    Intrinsic and Extrinsic Modulators of the Epithelial to Mesenchymal Transition: Driving the Fate of Tumor Microenvironment

    Get PDF
    The epithelial to mesenchymal transition (EMT) is an evolutionarily conserved process. In cancer, EMT can activate biochemical changes in tumor cells that enable the destruction of the cellular polarity, leading to the acquisition of invasive capabilities. EMT regulation can be triggered by intrinsic and extrinsic signaling, allowing the tumor to adapt to the microenvironment demand in the different stages of tumor progression. In concomitance, tumor cells undergoing EMT actively interact with the surrounding tumor microenvironment (TME) constituted by cell components and extracellular matrix as well as cell secretome elements. As a result, the TME is in turn modulated by the EMT process toward an aggressive behavior. The current review presents the intrinsic and extrinsic modulators of EMT and their relationship with the TME, focusing on the non-cell-derived components, such as secreted metabolites, extracellular matrix, as well as extracellular vesicles. Moreover, we explore how these modulators can be suitable targets for anticancer therapy and personalized medicine

    Primary tumor sidedness and benefit from FOLFOXIRI plus bevacizumab as initial therapy for metastatic colorectal cancer. Retrospective analysis of the TRIBE trial by GONO

    Get PDF
    Right-sided metastatic colorectal cancer (mCRC) patients have poor prognosis and achieve limited benefit from first-line doublets plus a targeted agent. In this unplanned analysis of the TRIBE study, we investigated the prognostic and predictive impact of primary tumor sidedness in mCRC patients and the differential impact of the intensification of the chemotherapy in subgroups defined according to both primary tumor sidedness and RAS and BRAF mutational status

    Posterior variant of alien limb syndrome with sudden clinical onset as self-hitting associated with thalamic stroke

    Get PDF
    We present a case of sudden postischaemic onset of alien limb syndrome, with unintentional self-injury. Alien limb syndrome is an uncommon neurological disorder featured by uncontrolled and involuntary movements of a limb. Three variants of alien limb syndrome have been described: the anterior, featured by grasping of surrounding objects, the callosal, presenting with intermanual conflict, and the posterior, associated with involuntary levitation of the limb. Our patient suffered from an acute presentation of the posterior variant of the alien limb syndrome, resulting from an isolated thalamic stroke which was documented using 24-h computed tomography brain scan. Only one previous case of alien limb syndrome after thalamic infarct has been reported. Our case enhances the possibility that pure thalamic injury may represent a trigger for this condition

    Classroom active breaks to increase children’s physical activity: A cross-sectional study in the province of Naples, Italy

    Get PDF
    Background: Classroom Active Breaks (CABs), short active sessions integrated in the school time, have been recognized as a promising tool to reduce sedentary behavior and increase Physical Activity (PA) levels in children. “AulAttiva” is a six-month CABs-based program implemented in primary schools of the province of Naples. The aim of this study was to evaluate its effectiveness by comparing PA and sedentary time of participating pupils respect to a control group, considering also their weight status. Methods: Four third-grade classes, each from 4 schools out of 32 participating in AulAttiva, and 4 third-grade classes, each from 4 schools out of 74 that did not take part, were randomly selected. Finally, 58 children composed the intervention group and 57 the control group. Age, gender, weight and height were registered for each participant. Weight status was classified as non-overweight and overweight/obesity. Sedentary time and PA were assessed through accelerometers along a school day. Results: Light PA was 4 min higher in the AulAttiva group with respect to controls (p = 0.046). Within the non-overweight children, the AulAttiva group spent less time in sedentary behavior and more time in light and total PA than controls. No significant differences were found between the overweight/obese subgroups. Conclusions: The results support the effectiveness of CABs in increasing PA during the school day. Greater effects were registered among normal weight pupils, suggesting the possible influence of weight status on children’s participation to the intervention. Further studies are needed to improve the compliance of overweight/obese children to this intervention

    An in silico structural approach to critical quality attributes assessment of biopharmaceutical products

    Get PDF
    \u201cQuality by design\u201d (QbD) is a key approach in modern pharmaceutical development, applied during the development, the manufacturing and the whole life cycle of the product, included the post approval phase, for assuring the quality in terms of efficacy and safety. In detail, QbD process includes the critical quality attributes (CQAs) assessment, providing a comprehensive understanding of the product itself and the manufacturing process. CQAs are defined as \u201call the physical, chemical, biological, or microbiological properties or characteristics that should be within an appropriate limit, range, or distribution to ensure the desired product quality\u201d (ICH Q8). They have a potential impact on bioactivity, PK, immunogenicity and safety and are associated with the drug substance and drug product. In the context of biotechnological products, the introduction of a structural investigation in an early identification of potential CQAs (pCQAs) can be very useful to QbD approach. Identification of pCQAs of biomolecules can lead the characterization process during the development phase in order to ensure the desired drug quality profile. Monoclonal antibodies (mAbs), fusion proteins and antibody-drug conjugates (ADC) represent one of the most innovative class of biopharmaceuticals, due to their ability to specifically recognize unique epitopes inducing specific therapeutic responses. CQAs assessment for these biopharmaceuticals is a complex analysis due to the lack of structural information. Actually, there is only one fully-crystallized human IgG1 (PDB entry: 1HZH) and, in absence of whole structures, it is challenging to understand the impact of structural insights on the therapeutic response. On these basis, the purpose of this study was to develop an in silico strategy to build the atomistic model of the whole structure of an IgG1, focusing on lambda and kappa light chains. To reach this goal, we used a structural chimeric approach that, using the Homology Modeling (HM) tool by MOE software, allowed us to build the full atomistic model of two therapeutic and commercially available IgG1: adalimumab (kappa chain) and avelumab (lambda chain). This allowed us to investigate structural differences between two isotypes, kappa and lambda, and understand the impact of these different characteristics on the antibody structure and function. Our results try to fill the gap between biological and structural properties on biotechnological products, created by lack of full immunoglobulin crystal structures. Moreover, this innovative structural approach can be used in CQAs assessment during the pharmaceutical development and production phases, giving an important resource to pharmaceutical companies. DISCLOSURES Merck Serono, Guidonia Montecelio-Rome, Italy is an affiliate of Merck KGaA, Darmstadt, Germany. Please note that avelumab has been approved in various countries for the treatment of metastatic Merkel cell carcinoma and in the US for treatment of advanced urothelial carcinoma progressed after platinum-containing treatment

    The pharmacology of visual hallucinations in synucleinopathies

    Get PDF
    Visual hallucinations (VH) are commonly found in the course of synucleinopathies like Parkinson's disease and dementia with Lewy bodies. The incidence of VH in these conditions is so high that the absence of VH in the course of the disease should raise questions about the diagnosis. VH may take the form of early and simple phenomena or appear with late and complex presentations that include hallucinatory production and delusions. VH are an unmet treatment need. The review analyzes the past and recent hypotheses that are related to the underlying mechanisms of VH and then discusses their pharmacological modulation. Recent models for VH have been centered on the role played by the decoupling of the default mode network (DMN) when is released from the control of the fronto-parietal and salience networks. According to the proposed model, the process results in the perception of priors that are stored in the unconscious memory and the uncontrolled emergence of intrinsic narrative produced by the DMN. This DMN activity is triggered by the altered functioning of the thalamus and involves the dysregulated activity of the brain neurotransmitters. Historically, dopamine has been indicated as a major driver for the production of VH in synucleinopathies. In that context, nigrostriatal dysfunctions have been associated with the VH onset. The efficacy of antipsychotic compounds in VH treatment has further supported the notion of major involvement of dopamine in the production of the hallucinatory phenomena. However, more recent studies and growing evidence are also pointing toward an important role played by serotonergic and cholinergic dysfunctions. In that respect, in vivo and post-mortem studies have now proved that serotonergic impairment is often an early event in synucleinopathies. The prominent cholinergic impairment in DLB is also well established. Finally, glutamatergic and gamma aminobutyric acid (GABA)ergic modulations and changes in the overall balance between excitatory and inhibitory signaling are also contributing factors. The review provides an extensive overview of the pharmacology of VH and offers an up to date analysis of treatment options
    • …
    corecore