295 research outputs found

    Mehr Mut zum Umwohnen

    Get PDF
    Dass der tägliche Zuwachs an Flächenversiegelung verringert werden muss, ist unbestritten. Die Ursachen des Verbrauchs sind ebenso bekannt wie mögliche Lösungswege. Was zur Verringerung des Flächenverbrauchs bislang auf breiter Basis fehlt, ist der entsprechende Wertewandel bei den Wohnvorstellungen

    Object classification on video data of meteors and meteor-like phenomena: algorithm and data

    Get PDF
    Every moment, countless meteoroids enter our atmosphere unseen. The detection and measurement of meteors offer the unique opportunity to gain insights into the composition of our solar systems’ celestial bodies. Researchers therefore carry out a widearea-sky-monitoring to secure 360-degree video material, saving every single entry of a meteor. Existing machine intelligence cannot accurately recognize events of meteors intersecting the earth’s atmosphere due to a lack of high-quality training data publicly available. This work presents four reusable open source solutions for researchers trained on data we collected due to the lack of available labelled high-quality training data. We refer to the proposed data set as the NightSkyUCP data set, consisting of a balanced set of 10 000 meteor- and 10 000 non-meteor-events. Our solutions apply various machine-learning techniques, namely classification, feature learning, anomaly detection, and e xtrapolation. F or the classification task, a mean accuracy of 99.1 per cent is achieved. The code and data are made public at figshare with DOI 10.6084/m9.figshare.16451625

    CCL2/CCR2 and CX3CL1/CX3CR1 chemokine axes and their possible involvement in age-related macular degeneration

    Get PDF
    The causes of age-related macular degeneration (AMD) are not well understood. Due to demographic shifts in the industrialized world a growing number of people will develop AMD in the coming decades. To develop treatments it is essential to characterize the disease's pathogenic process. Over the past few years, numerous studies have focused on the role of chemotactic cytokines, also known as chemokines. Certain chemokines, such as CCL2 and CX3CL1, appear to be crucial in subretinal microglia and macrophage accumulation observed in AMD, and participate in the development of retinal degeneration as well as in choroidal neovascularization. This paper reviews the possible implications of CCL2 and CX3CL1 signaling in AMD. Expression patterns, single nucleotide polymorphisms (SNPs) association studies, chemokine and chemokine receptor knockout models are discussed. Future AMD treatments could target chemokines and/or their receptors

    Thinning of the RPE and choroid associated with T lymphocyte recruitment in aged and light-challenged mice

    Get PDF
    International audienceThe choroidal vasculature is essential when it comes to bringing oxygen and nutrients to the functioning retina and evacuating debris resulting from the normal visual cycle. Choroidal thinning is a common feature in many human eye diseases, including high myopia [1,2] and retinitis pigmentosa [3,4], and has been reproducibly observed with age [5-7]. However, the association between choroidal thinning and age-related macular degeneration (AMD) remains controversial. Some authors have reported the loss of choriocapillaries in eyes with exudative AMD [8], and choroidal thinning has been detected in some studies [9-11]. Choroidal thinning has also been associated with geographic atrophy (GA), the dry form of late AMD [12-15]. A morphometric analysis by Ramrattan et al. more than two decades ago showed a decrease in choriocapillary density and diameter with age and in GA, but choroidal thinning was only significant with age [6]. Moreover, it has been reported that the choriocapillaries and choroid are thinner in areas where the RPE has degenerated [8]. However, all studies agree that aging is associated with significant choroidal thinning [16-18]. The exact mechanisms behind choroidal thinning with age or disease are not clear. The RPE is a monolayer of pigmented cells situated between photoreceptors and Bruch's membrane; its plays an essential role in the visual cycle. RPE65, which is also called 11-cis retinol isomerase and is strongly expressed in the RPE, participates in the production of 11-cis retinal [19], which is essential for photoreceptor function [20]. Mutations in the RPE65 gene cause progressive photoreceptor degeneration [21,22] and adult RPE65 −/

    Effects of triamcinolone acetonide on vessels of the posterior segment of the eye

    Get PDF
    PURPOSE: This study investigates the effects of triamcinolone acetonide (TA) on retinal endothelial cells in vitro and explores the potential vascular toxic effect of TA injected into the vitreous cavity of rats in vivo. METHODS: Subconfluent endothelial cells were treated with either 0.1 mg/ml or 1 mg/ml TA in 1% ethanol. Control cells were either untreated or exposed to 1% ethanol. Cell viability was evaluated at 24 h, 72 h, and five days using the tetrazolium 3-(4,5-dimethylthiazol-2-yl)-2,5 phenyltetrazolium bromide test (MTT) and lactate dehydrogenase (LDH) assays. Cell proliferation was evaluated by 5-bromo-2-deoxyuridine (BrdU) test. Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay (TUNEL assay), annexin-binding, and caspase 3 activation. Caspase-independent cell deaths were investigated by immunohistochemistry using antibodies against apoptosis inducing factor (AIF), cytochrome C, microtubule-associated protein (MAP)-light chain 3 (MAP-LC3), and Leukocyte Elastase Inhibitor/Leukocyte Elastase Inhibitor-derived DNase II (LEI/L-DNase II). In vivo, semithin and ultrathin structure analysis and vascular casts were performed to examine TA-induced changes of the choroidal vasculature. In addition, outer segments phagocytosis assay on primary retinal pigment epithelium (RPE) cells was performed to assess cyclooxygenase (COX-2) and vascular endothelial growth factor (VEGF) mRNAs upregulation with or without TA. RESULTS: The inhibitory effect of TA on cell proliferation could not explain the significant reduction in cell viability. Indeed, TA induced a time-dependent reduction of bovine retinal endothelial cells viability. Annexin-binding positive cells were observed. Cytochrome C was not released from mitochondria. L-DNase II was found translocated to the nucleus, meaning that LEI was changed into L-DNase II. AIF was found nuclearized in some cells. LC3 labeling showed the absence of autophagic vesicles. No autophagy or caspase dependent apoptosis was identified. At 1 mg/ml TA induced necrosis while exposure to lower concentrations for 3 to 5 days induced caspase independent apoptosis involving AIF and LEI/L-DNase II. In vivo, semithin and ultrathin structure analysis and vascular casts revealed that TA mostly affected the choroidal vasculature with a reduction of choroidal thickness and increased the avascular areas of the choriocapillaries. Experiments performed on primary RPE cells showed that TA downregulates the basal expression of COX-2 and VEGF and inhibits the outer segments (OS)-dependent COX-2 induction but not the OS-dependent VEGF induction. CONCLUSIONS: This study demonstrates for the first time that glucocorticoids exert direct toxic effect on endothelial cells through caspase-independent cell death mechanisms. The choroidal changes observed after TA intravitreous injection may have important implications regarding the safety profile of TA use in human eyes

    Cone Genesis Tracing by the Chrnb4-EGFP Mouse Line: Evidences of Cellular Material Fusion after Cone Precursor Transplantation.

    Get PDF
    The cone function is essential to mediate high visual acuity, color vision, and daylight vision. Inherited cone dystrophies and age-related macular degeneration affect a substantial percentage of the world population. To identify and isolate the most competent cells for transplantation and integration into the retina, cone tracing during development would be an important added value. To that aim, the Chrnb4-EGFP mouse line was characterized throughout retinogenesis. It revealed a sub-population of early retinal progenitors expressing the reporter gene that is progressively restricted to mature cones during retina development. The presence of the native CHRNB4 protein was confirmed in EGFP-positive cells, and it presents a similar pattern in the human retina. Sub-retinal transplantations of distinct subpopulations of Chrnb4-EGFP-expressing cells revealed the embryonic day 15.5 high-EGFP population the most efficient cells to interact with host retinas to provoke the appearance of EGFP-positive cones in the photoreceptor layer. Importantly, transplantations into the DsRed retinas revealed material exchanges between donor and host retinas, as >80% of transplanted EGFP-positive cones also were DsRed positive. Whether this cell material fusion is of significant therapeutic advantage requires further thorough investigations. The Chrnb4-EGFP mouse line definitely opens new research perspectives in cone genesis and retina repair

    VEGFR1 signaling in retinal angiogenesis and microinflammation

    Get PDF
    Five vascular endothelial growth factor receptor (VEGFR) ligands (VEGF-A, -B, –C, -D, and placental growth factor [PlGF]) constitute the VEGF family. VEGF-A binds to VEGF receptors 1 and 2 (VEGFR1/2), whereas VEGF-B and PlGF only bind VEGFR1. Although much research has been conducted on VEGFR2 to elucidate its key role in retinal diseases, recent efforts have shown the importance and involvement of VEGFR1 and its family of ligands in angiogenesis, vascular permeability, and microinflammatory cascades within the retina. Expression of VEGFR1 depends on the microenvironment, is differentially regulated under hypoxic and inflammatory conditions, and it has been detected in retinal and choroidal endothelial cells, pericytes, retinal and choroidal mononuclear phagocytes (including microglia), Müller cells, photoreceptor cells, and the retinal pigment epithelium. Whilst the VEGF-A decoy function of VEGFR1 is well established, consequences of its direct signaling are less clear. VEGFR1 activation can affect vascular permeability and induce macrophage and microglia production of proinflammatory and proangiogenic mediators. However the ability of the VEGFR1 ligands (VEGF-A, PlGF, and VEGF-B) to compete against each other for receptor binding and to heterodimerize complicates our understanding of the relative contribution of VEGFR1 signaling alone toward the pathologic processes seen in diabetic retinopathy, retinal vascular occlusions, retinopathy of prematurity, and age-related macular degeneration. Clinically, anti-VEGF drugs have proven transformational in these pathologies and their impact on modulation of VEGFR1 signaling is still an opportunity-rich field for further research

    Rôles des chimiokines dans le développement de la dégénérescence maculaire liée à l’âge

    Get PDF
    International audienceRole of chemokines in the development of age-related macular degeneration. Age-related macular degeneration (AMD) is the main cause of irreversible blindness in industrialized nations. Recent research has emphasized the importance of inflam-matory processes in pathogenesis of this disease. Chemotactic cytokines also named chemokines are important mediators of inflammation and might have a role in development of this disease. They appear to be crucial in the subretinal microglia / macrophage accumulation observed in AMD and may participate in the development of retinal degeneration and in choroidal neovascularization. This paper reviews the possible implication of chemokines in the development of AMD.La dégénérescence maculaire liéeà l'âge (DMLA) est la principale cause de cécité irréversible dans les pays industrialisés. Lesétudes récentes mettent en exergue l'importance des processus inflammatoires dans le développement de la maladie. Les cytokines chimiotactiques, dénommées chimiokines, qui apparaissent comme des médiateurs importants de l'inflammation, pourraient jouer un rôle dans le développement de la DMLA. Plus particulièrement, elles semblent indispensables dans le processus d'accumulation des microglies/macrophages dans l'espace sous-rétinien observé au cours de la DMLA. Elles pourraient par conséquent partici-per au développement de la dégénérescence rétinienne et de la néovascularisation choroïdienne. Dans cette revue, nous décrirons l'implication des chimiokines et de leurs récepteurs dans le développement de la DMLA
    corecore