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A B S T R A C T 

Every moment, countless meteoroids enter our atmosphere unseen. The detection and measurement of meteors offer the unique 
opportunity to gain insights into the composition of our solar systems’ celestial bodies. Researchers therefore carry out a wide- 
area-sky-monitoring to secure 360-degree video material, saving every single entry of a meteor. Existing machine intelligence 
cannot accurately recognize events of meteors intersecting the earth’s atmosphere due to a lack of high-quality training data 
publicly available. This work presents four reusable open source solutions for researchers trained on data we collected due to the 
lack of available labelled high-quality training data. We refer to the proposed data set as the NightSkyUCP data set, consisting 

of a balanced set of 10 000 meteor- and 10 000 non-meteor-events. Our solutions apply various machine-learning techniques, 
namely classification, feature learning, anomaly detection, and e xtrapolation. F or the classification task, a mean accuracy of 
99.1 per cent is achieved. The code and data are made public at figshare with DOI 10.6084/m9.figshare.16451625 . 
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 INTRODUCTION  

eteors have al w ays been a source of f ascination for people. In the
ast, meteors were divine signs or harbingers of misfortune, like wars,
lague, and bad harvests. This view changed at the end of the 18th
entury with a publication of Ernst Florens Friedrich Chladni, who 
et up in his book the revolutionary and contro v ersial thesis that the
eteorites found on earth have their origin in space Chladni ( 1794 ).
oward and de Bournon published scientific data on meteorites for 

he first time only a few years later B ̈uhler ( 1988 ). Meteoroids
re the Solar system’s small and smallest body fragments we can 
bserve falling into the earth’s atmosphere. If these enter the earth’s 
tmosphere, luminous phenomena appear, which are called meteors. 
f meteoroids or parts of meteoroids reach the earth’s surface, they are
alled meteorites. The detection and measurement of meteors offer 
any possibilities to gain scientific knowledge. For example, meteor 

bservations can be used to determine an orbit, which provides 
nsight into the origin of these small bodies Janches et al. ( 2020 )
nd Ferus et al. ( 2020 ). Furthermore, the observed sequence of
uminosity and possibly spectroscopy allows conclusions about the 
omposition of the material and its size Ferus et al. ( 2020 ). In
n effort to capture every single meteor entry, researchers carry 
ut a wide-area-sky-monitoring. Since early 2019, there has been 
n independent network of digital stations under construction and 
ontinuous expansion called AllSky7 Fireball Network Germany , 
E-mail: Martin.Hofmann@tu-ilmenau.de
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hich is mainly operated by volunteers AllSky7 Fireball Network 
ermany ( 2020 ). Currently, the network consists of over 40 stations

cross the US and central Europe. Each station has seven cameras
rranged in a hemisphere, co v ering the entire sky with o v erlap (see
ig. 1 ). Generic calibrated board cameras with IMX 291 Sony Starvis
MOS 

1 chips are used here because they are small, ine xpensiv e, and
uitable for low-light applications Hankey, Perlerin & Meisel ( 2020 ).
amera operators and specialists classify thousands of false-positive 

amples by hand due to the lack of an accurate pre-classification
odel at AllSky7. Accordingly, our task was to develop machine- 

earning algorithms and a data-collection process that yields high- 
uality data. Our intensive search did not yield any publicly available
ata helping us to further enhance the pre-classification model at 
llSky7. Therefore, scientists and voluntary enthusiasts decided 

o collect those high-quality data to train no v el machine-learning 
lgorithms, reducing the immense workload. 

We collected and proposed the NightSkyUCP 
2 data set with the 

dea in mind to bring the machine-learning algorithms and the data to
he people who need them and to eventually reduce the classification
fforts of camera operators. Table 1 gives an overview of previously
sed data sets in the field. Whether a classifier can ef fecti vely detect
on-meteor events by learning what meteors look like is an open
uestion that we shed light on using our collected data. Ho we ver,
ublic data sets consist of only one class. Our data set closes this gap
nd enables researchers and enthusiasts to benchmark approaches 
 Complementary metal-oxide-semiconductor. 
 NightSky Unidentified Celestial Phenomena. 
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Figure 1. Stitched raw video material of the camera arrangement of the AllSky7 system using an observation at the Sonneberg station. The source data are 
available online [cp. AllSky7 Fireball Network Germany ( 2020 )]. 

Table 1. Previously studied and partly publicly available meteor data sets. 

Data set Ref. #Samples Classes Videos Sum-images Metadata Availability 

AstDyS-2 Asteroids Dynamic Site ( 2021 ) 931 796 single no no orbital data public 
NASA Fireballs NASA’s All Sky Fireball 

Network ( 2021 ) 
98 single yes yes Location, light curve, 

orbital data 
public 

SNM20xxx SonotaCo Network 
Simultaneously Observed 

Meteor Data Sets SNM20xxx 
( 2021 ) 

346 041 single no no radiant maps, ground 
maps, orbital data 

public 

Video MeteorDB meta Video Meteor Database ( 2021 ) 3971 618 single no no coordinates, apparent 
velocity, brightness, 
shower membership 

public 

EDMOND 5 v.04 Kornos et al. ( 2014 ) 317 380 single no no orbital data, 
atmospheric 
parameters 

public 

CMN Orbit Catalogues Korlevi ́c et al. ( 2013 ) 41.634 single no no orbital data public 
CAMS Meteoroid Orbit Database v3.0 Jenniskens et al. ( 2018 ) 471 582 single no no orbital data public 
Global meteor network data set Vida et al. ( 2021 ) > 220 000 single no no orbital data public 
Video MeteorDB img Video Meteor Database ( 2021 ) 3971 618 single yes yes position, brightness per 

frame 
pri v ate 

CAMS video ML subset Gural ( 2019 ) ≈200 000 multi yes yes track measurements pri v ate 
NightSkyUCP (ours) 20 000 multi yes yes stacks of crops and 

mo v ement 
public 
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gainst another and develop new methods. The NightSkyUCP data
et consists of equally distributed meteor and non-meteor samples.
lthough meteor events are relatively rare events observable in the

k y, the y are usually easily recognizable. Therefore, we focus on the
ewer non-meteor events that have been confused by our detection
nd classification pipeline and are classified manually by our camera
perators; These samples are considered ’hard’ samples. 
After all, we tackled the challenge of creating a model that solves

he precategorization task to give volunteers and experts the time to
ollect more valuable data. We refer to this task as classification.
 problem with meteor videos is that objects in the foreground

ometimes obstruct the trajectory, and so, several videos of one single
vent are created. The prediction of events curvature enables the
atching of events with obstructed trajectories. Matching events

y their anticipated curvature produces more conclusive i.e. less
edundant events and, finally, higher-quality samples. We refer to this
ask as extrapolation. Due to the small number of labelled subclass
amples, we e v aluate their conclusi veness qualitati vely. We therefore
isualize their extracted hidden representations, referring to this task
NRAS 516, 811–823 (2022) 
s feature learning. Finally, we e v aluated the quality of an algorithm
rained only on meteor data to determine if the already available
ideos of meteor events would have been enough to create a high-
uality classifier. Since we model the data distribution of the meteor
lass and compare it to the data distribution of the non-meteor class,
e refer to this task as anomaly detection, i.e. we try to detect samples

hat do not fit the data distribution (anomalies). 
These methods show exciting results and no v el approaches, but

ew provided open data and the code. To overcome this absence of
pen data and code, we make the algorithm and code presented in
his work publicly available. Accordingly, we integrate the mentioned
echniques, such as pretrained feature extractors and recurrent neural
etworks, and e v aluated v arious classifiers, recurrent units, and input
ata variations such as single images or stacks representing video
equences. 

Methods developed based on our data set could be used in the fu-
ure not only for meteors but also for other transient celestial meteor-
ike events. One exciting example is space debris research, which
lays an increasing role in connection with mega-constellations of

art/stac1948_f1.eps
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3 https:// github.com/ mikehankey/ amscams 
atellites. The reentering satellite and rocket debris may show very 
imilar characteristics as meteors. It might be possible to differentiate 
etween them by the duration of the glow, the course of brightness,
nd the absolute brightness. 

Table 2 compares our data set with two of the most popular
eneral video databases. It is noticeable that while having fewer 
amples, o v erall, NightSk yUCP disposes more samples per class and
s balanced. Another advantage of NightSkyUCP for the Machine 
earning community is that videos of the two classes, meteor and 
on-meteor, are very similar and often differ only in minor details, 
uch as curvature, direction, colour variation, or fading. Comparing 
eteor videos to videos of planes, one notices only bright objects 
ith dark backgrounds in the first place. Only experts can distinguish

uch samples, especially if the sequences are short. Therefore it 
an be an exciting challenge not only for classification but also for
nomaly detection. 

With this work, we provide the algorithms needed to start classi-
ying sky phenomena, along with a publicly available data set of sky
henomena, consisting of both meteors and non-meteors with a total 
f 20 000 samples. At least three different experts evaluated every 
ample to ensure a high quality of the data set. Two more experts
dditionally checked 297 non-meteor and 277 meteor samples to 
nsure they were correctly labelled. These samples were only 
ccepted if all five experts came to a conclusive decision. We provide
ideos of the events, sum-images, stacks of crops, and motion data to
ccommodate a wide range of tasks. NightSkyUCP is available to the 
e vie wers at figshare and will be published under a CC BY- NC- SA
icense once accepted. A data sheet (Gebru et al. 2021 ) summarizing
ightSkyUCP along with detailed documentation can be found in 

he Appendix A . 
The NightSkyUCP can be used for a variety of tasks, namely 

lassification, feature learning, anomaly detection, and extrapolation. 
olving of these tasks can help to impro v e meteor detection,
lassification of different transient celestial events and provide deeper 
nsight in the nature of the data. To explore the possibilities, we apply
e veral adv anced machine-learning methods. 

The remaining sections are organized as follows: Section 2 
escribes the NightSkyUCP data set, including data collection, pre- 
rocessing, and analysis. Section 3 describes the experiments for 
he tasks classification, feature learning, anomaly detection, and 
xtrapolation. In Section 4 , the limitations of the NightSkyUCP data 
et are assessed, followed by a conclusion in Section 5 . 

 THE  NIGHTSKYUAP  DATA  SET  

he NightSkyUAP data set provides a publicly available source of 
oth meteor and non-meteor video data for classification, motion 
rediction, unsupervised clustering, and anomaly detection. The data 
et consists of 20 000 H.264 encoded colour videos of phenomena 
nside MPEG-4 container files, absolute and relative positions of 
he phenomenon in the video and class information in a CSV file,
orrected coloured sum-images of the video files as jpeg image-files, 
nd sequences of 32x32 pixel crops as a NumPy array stack, stored
n PYTHON pickle format. 

.1 Data collection and annotation 

he cameras of the Allsky7 network run continuously and record 
wo data streams in parallel, one in HD (1920 × 1080 pixels) and
ne in SD (704 × 576 pixels), both at 25 frames per second. The
mage sequences are H.264 encoded into MPEG files, each 1 min 
ong and held for up to 2 days. Image analysis software runs at
ach station to detect interesting events that could be meteors in 
he SD video clips. To obtain only information potentially rele v ant
or classification, the videos are spatially and temporally cropped 
o these events. Both the detection and the cropping are performed
sing the ALLSKY7 software, which is accessible at AMS Fireball 
amera Generation ( 2021 ). 

.1.1 Process 

ig. 2 depicts Allsky7’s data collection process. The automatic event 
etection 3 detects any movement in the sky based on a simple rule-
et that ALLSKY7 empirically developed to detect every event assidu- 
usly. The system then classifies these events and passes them to the
amera operator. Afterwards, each camera operator re vie ws these de-
ections to sort out any false-positive events. To ensure a high quality
f the data set, the correct labelling was re vie wed again by members
f the association Astronomiemuseum-Verein Sonneberg. Samples 
alsely labelled as positive by the automatic detector are retained for
ightSkyUCP’s non-meteors class. This way, only non-meteor data 

hat are similar to meteors is included in the non-meteor class. 
Such false-positive labelled samples occur due to local events 

ear the camera stations, such as flying birds, light flares, waving
rees, fog or rain, and non-local events far away from the camera
tations, such as sk y-div ers, planes, satellites, flashes of lightning,
r clouds. While the former is potentially automatically eliminated 
y geometric trajectory solution constraints derived from footage 
aptured by multiple camera stations, it is impossible to perform 

his analysis for the latter case since those will be observable across
ifferent stations at the same time. Furthermore, the camera systems 
an not rely on information that depends on shared information in
he early stages of the classification process since the events are
oo numerous, and the synchronization would, therefore, exceed the 
andwidth and computation capabilities of the Network. 
In this way, we created a data set consisting of 10 000 events in

he form of spatially and temporally cropped videos per class meteor
nd non-meteor , thus comprising a total of 20 000 events. A subset
f 116 non-meteor events was manually labelled and divided into 
he subclasses clouds , birds , planes , trees , rain , and light flashes .

hile 116 labelled non-meteor events are not enough to actually 
rain a machine-learning algorithm to divide these subclasses, this 
ubset can be used for the e v aluation of feature learning and anomaly
etection methods of the non-meteor data. 
To validate label quality, we drew a random sample of data that

e validated against three additional experts’ opinions. We report 
he results of that validation in Section 4 . We further created a test
et consisting of 574 samples, 297 being non-meteor and 277 being
eteor samples. Five experts classified the samples, and only if all the

xperts initially decided on the same label, they included the sample
nto the data set. Clouds , birds , planes , trees , rain , and light flashes
ften cause false-positive samples; the former three are non-local 
isturbances and the latter local ones. We labelled 116 non-meteor 
amples into these six classes to gain insights into the structure of
he non-meteor class. 

.2 Video pr e-pr ocessing 

ach event in the data set consists of the original cropped video,
 sum-image, a stack of 32 × 32 pixel crops around the centre of
ravity of the lightest moving pixels in each frame, and a stack of
he corresponding metadata in the form of relativ e mo v ement and
MNRAS 516, 811–823 (2022) 
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Table 2. Comparison of popular video data sets with NightSkyUCP. 

Data set Ref. #Samples #Classes # Samples
C las s

balanced 

YouTube-8M YouTube-8M Data set ( 2021 ) 6.1 million 3862 avg. of 3552 no 
Kinetics 700 Carreira et al. ( 2019 ) 650.317 700 min. 600 no 
NightSkyUCP (ours) 20.000 2 10.000 yes 

Figure 2. Illustration of Allsky7’s data collection process. 
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oordinates. Below, we describe the generation of these sum-images
nd stacks. 

The sum-image per event is generated by comparing each con-
ecutive frame pixel by pixel and by choosing the brighter pixel
alue, thus taking the maximum temporal pixel value per pixel. This
echnique is based on Jenniskens et al. ( 2011 ), but instead of using a
xed number of frames, we use all available video frames to generate
ur image. Often stars and stationary objects like lanterns that shine
righter than the event disturb the detection of the brightest region.
herefore, we subtract the first frame of the video to remo v e the non-
oving part of the background and to only keep the event’s moving

ixels yielding reduced noise in the data and improving the detection
f the brightest and darkest region in the image. We have made the
ssumption that the combination of focal length and exposure time
f the cameras leads to stars also being perceived as non-moving
bjects and that the sky’s star sidereal motion does not shift more
han a pixel over the time of our video. This assumption has been
onfirmed in practice. Fig. 3 depicts examples of the sum-images
ith and without subtraction for both classes. In every instance, the
pper row is lower in contrast, and bright regions often conceal the
egion of interest. 

F or the e xtraction of image-stacks, i.e. image-sequence-stacks, we
ust ensure that a meteor is al w ays the brightest mo ving pix el cluster

n the respective video. The point around which to crop must first
e detected to generate the stack of crops for each video frame. We
alculate this point based on the brightness of the video frames’
ixels. Bright stars or regions infer with the detection based on
he brightest area-for example, an incorrectly detected bright star
s the centre of the region of interest. Therefore, we subtract the
rst frame of the video from each of the following frames before
etermining the brightest pixel. In this way, we exclude the static
ackground of the video in the search for the meteor. To prevent
etecting brightness fluctuations in the image as part of the meteor,
e introduce a threshold value (i.e. 10 of 255) for the brightness value
f the brightest pixel found. If the pixel value is below this threshold,
e assume it does not belong to the searched meteor. Because all

he cameras are calibrated and dynamically adjust to brightness, this
xed threshold can be used to exclude background noise. We take
 32 × 32 pixel area crop around the position of the greatest pixel-
alue abo v e the threshold. We giv e an e xample for such a stack of
rops in Fig. 4 . For each of the crops, the motion of the brightest
NRAS 516, 811–823 (2022) 

b  
ixel between the consecutive frames and the coordinates relative to
he video is stored. 

.3 Details of the data set 

he size of the videos varies between 80 × 44 and 640 × 360 pixel.
he length of the videos varies between 0.08 and 14.32 s. Respec-

ively, the number of frames for each event is different, ranging
rom 2 to 358 frames. That means some events are only visible in a
link of an eye while others last comparably long. The longest and
rightest events, so-called fireballs, are the most exciting events in
he sky. To understand the structure of the data better, we performed
n analysis. We were interested in the average speed of the events and
he av erage pix el distance since it is reasonable to assume a different
ix el distance trav eled per frame for meteors and non-meteors. Fig. 5
hows the distribution of Euclidean and Manhattan distances events
ravelled per frame over the whole data set estimated by a kernel
ensity estimation (KDE). One can observe that the non-meteors
istribution has a broader range with a shorter mean distance and a
ong tail towards long distances. 

In the same way, Fig. 6 shows the distribution of the event’s
uration estimated by a KDE. Here, we counted the number of
rames in which the brightest pixel is abo v e a threshold of 10. The
gure illustrates that non-meteor events, with 100 frames average, are
uch longer than meteor ev ents, whose av erage length is 13 frames.
ince the two classes slightly o v erlap, we calculated a threshold

hat separates them from the distributions. We obtained the best
eparation with a threshold of 47.5. Applying this threshold, we
lassify 395 samples wrong, leading to an accuracy of 98 . 02 per cent .
his accuracy could act as a baseline for classification performance.
e assume that the difficult and interesting events are mainly those
hich lie at the intersection. Especially very bright meteors, so-

alled bolides or fireballs, usually last much longer than the average
eteor event and would be assigned to the class of non-meteors by

his simple classification rule. 

 EXPERIMENTATION  

hese e xperiments pro vide insight into the data’s structure, also
epresenting proof of concept for the different tasks we described
efore. Although we compared different methods and e v aluated

art/stac1948_f2.eps
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Figure 3. Examples of sum-images from the two classes meteors (a) and non-meteors (b). In the top rows of (a) and (b), the sum-images before subtracting the 
first frame are shown and in the bottom row are the sum-images with the first frame subtracted. 

Figure 4. Example of a generated stack of crops. In (a), the meteor is depicted 
as sum-image. In (b), the corresponding stack of crops can be seen. 

a
p  

p
p
c

(a)

(b)

Figure 5. Display of the average distance travelled per frame for all events 
in the data set, divided by class. The visualization is done by a KDE. The 
Euclidean distance (a) and the Manhattan distance (b) serve as distance 
measures. 
 specific range of parameters, many choices were made by best 
ractice and may not be optimal in the specific setting. We, ho we ver,
rovide the implementation of four experiments to aid scientists 
erforming Wide-area-sky-monitoring and give baseline results to 
ompare with: 
MNRAS 516, 811–823 (2022) 
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Figure 6. Plot of the average event length per class. The visualization is done 
with a KDE. In red is the optimal threshold for separating the two classes 
based on the number of frames. 
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(i) Classification. Classification refers to the task of predicting a
lass label for a given input sample. NightSkyUCP allows classifying
eteors and non-meteors based on the sum-images, the videos

irectly or from the crop- and the motion-stacks. An additional
roblem is performing the classification e xclusiv ely based on the first
ew, e.g. five, frames of an event. The advantage of classifying only
n the first frames would be that waiting for the whole meteor in a live
ideo stream would not be necessary. This way, live classification
ould be performed with only a little delay. 

(ii) Feature lear ning . NightSk yUCP samples can be used to learn
eatures that allow for clustering of the non-meteor data. It would be
nteresting to find whether the different types of non-meteors can be
lustered in an unsupervised manner. A small subset of non-meteor
ata is already labelled to check the quality of such clusters. 
(iii) Anomaly detection. Researchers could also perform

nomaly detection on the meteor data. The task there should be
istinguishing between meteor and non-meteor events while only
raining with meteor data. Especially, non-meteors like airplane flash
hains look very similar to meteors. It is to be investigated whether
he positive class can be defined precisely enough by the data of the
eteor class to detect the more difficult non-meteors correctly. 
(iv) Extrapolation. The motion-stacks can be used to predict the

ath of a meteor. Nevertheless, it is unclear how curvature and motion
re connected to the brightness in each frame. Machine learning could
nd a connection between the brightness and the motion so that
esearchers get insights into the type of an event. Often, meteorites
re co v ered by clouds or trees in the foreground so that their path
s not complete and their trajectory is unclear. Meteor data could
e artificially co v ered to learn how to reco v er the lost information
egarding the path and brightness. 

The first task is classifying data into two classes, meteor and non-
eteor, based on the sum images. We trained an ImageNet pre-trained
esNet20 (He et al. ( 2016 ) in combination with a spatial pyramid
ooling (SPP) layer (He et al. 2015 ), allowing for processing different
nput sizes in a convolutional neural network with a linear classifier
ead. We employed a pre-trained model because it is already trained
n an e xtensiv e data set to generate well separable features. Since it
s usually a complicated procedure to tune all network architecture
arameters to fit the data well enough, we leave it to future work to
nd such an architecture for meteor data. We used a batch size of
00, the Adam optimizer Kingma & Ba ( 2015 ) with a learning rate
f 0.005 and trained for 200 epochs. We also use synaptic scaling
oss as a regularization technique (Hofmann & M ̈ader 2022 ) with a
caling rate γ = 1 e − 7 and a target acti v ation of z T = 0.5 together
NRAS 516, 811–823 (2022) 
ith batch normalization as part of ResNet20 Ioffe & Szegedy ( 2015 )
nd exponential dampening of the weight updates using μ = 0.9999.
e split the data randomly into train and test data, using 80 per cent

or training and 20 per cent for e v aluation. For robust e v aluation,
e employ a Monte Carlo cross-validation with five iterations.
cross these five training iterations, we achieved a mean accuracy of
7 . 33 per cent with a standard deviation of 0 . 6 per cent . This result
s not considerably below the baseline of 98 , 02 per cent that we
chieved by classifying based on the event length. We therefore
onclude that the sum-images without temporal information are not
ufficient for reliable classification. 

To check if the explicit temporal information, motion, and direc-
ion contained in the image- and motion-stacks and the metadata
re better suited for the task of classification, we conducted fur-
her experiments with different feature extraction methods. These

ethods get both the stack of metadata and the imagestacks as
nput, thus containing more temporal information than the sum-
mages. As methods for the feature extraction, we compared an
ong short-term memory (LSTM), gated recurrent unit (GRU),
emporal convolutional network, time delay neural network (TDNN),
nd an Autoencoder based on LSTMs. Furthermore, we compared
ifferent classifiers, specifically a fully connected layer, support
ector machine (SVM) and random forest. The hyperparameters
sed for the different methods can be found in appendix B. Again we
plit the data randomly into train and test data using 80 per cent for
raining and 20 per cent for e v aluation and employ a Monte Carlo
ross-validation with five iterations. The experimental results can be
een in Table 3 . We used the most recent version of PYTORCH for our
xperiments. On a NVidia 2080Ti, depending on the used method,
raining a network for classifying took between 22 min and 5 h. 

The best mean accuracy of 99 . 1 per cent can be achieved with
RU as feature extractor and SVM as classifier. The best o v erall
erformance is achieved with GRU as feature extractor and SVM
s classifier. Although the SVM classifier achieves an equivalent
ccuracy on LSTM and GRU, we consider GRU superior due to a
educed number of learnable parameters and a faster inference time.
he achiev ed accurac y is better than the baseline of 98 . 02 per cent
sing a rule based on the length of the events. Future iterations of
his data set provided at the given link will contain a greater number
f those samples. Our classifier achieved an average accuracy of
3 . 54 per cent on those events. It is noticeable that this accuracy
s far below the mean value of the accuracy overall test data. This
ecrease in accuracy confirms the assumption that these samples are
hallenging to classify. Furthermore, we assume that the length of the
vent is also included in the features extracted by GRU. We also con-
idered the data that the trivial classification rule would incorrectly
lassify for each run for the combination of GRU and SVM. 

Fig. 7 presents the accuracy and the corresponding rate of un-
lassified samples when tuning the classifier threshold – a neurons’
inimum acti v ation that it must exceed. Increasing the threshold

mpro v es the accuracy and increases the estimated proportion of
amples that have to be re vie wed by specialists. Nevertheless,
amples with lower scores represent more interesting samples with
 higher value for training (Brust, K ̈ading & Denzler 2019 ). We
herefore are gathering more and more informative samples and
ncreasing the accuracy to 99.98 per cent while decreasing the
orkload by the factor of 8–10. 

.2 Experiment ii: feature learning 

he second task is e v aluating ho w well the non-meteors can be
lustered without using the label information during training. We use
he convolutional network trained for Task 1 as a feature extractor
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Table 3. Accuracy and standard deviation in per cent for the e v aluation of feature extractor and classifier combinations. 
Shown are the mean and standard deviation of the accuracy over 10 training runs on random data splits. 

LSTM GRU TCN TDNN SPP AEC 

Acc ± STD Acc ± STD Acc ± STD Acc ± STD Acc ± STD Acc ± STD 

Linear 99.00 ± 0.13 99.05 ± 0.08 98.89 ± 0.15 94.38 ± 0.24 97.52 ± 0.24 99.01 ± 0.15 
SVM 99.03 ± 0.10 99.10 ± 0.09 98.88 ± 0.15 94.62 ± 0.21 97.83 ± 0.16 98.99 ± 0.09 
RF 99.03 ± 0.14 99.09 ± 0.09 98.99 ± 0.18 95.96 ± 0.18 97.64 ± 0.13 98.92 ± 0.09 

Figure 7. This figure presents the accuracy and the corresponding rate of 
unclassified samples when tuning the classifier threshold. 
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or the sum-images, which results in feature vectors of size 10. The
imension reduction techniques Isomap and t-SNE Tenenbaum, De 
ilva & Langford ( 2000 ), Van der Maaten & Hinton ( 2008 ) are used

o visualize 3D embedding (cp. Fig. 8 ). While the Isomap embedding
s fit on a 10 per cent split of the non-meteor data to show a result in
 training/validation setting, the t-SNE embedding is fit on all data to
isualize the manifold. 
Fig. 8 a shows that the manifold is split into two seemingly

eparable clusters, one containing particularly birds and rain and 
ne containing especially trees, lights, and planes. Clouds seem 

o be equally distributed. Notably, birds are the only class that 
s completely confined to one cluster. Trees, ho we ver, tend to be
ncluded in both clusters but seem to form subclusters that are a part
f the other samples. We can also see that planes and lights seem
o be sparsely distributed o v er one cluster, hardly separate from
ach other. The 3D Isomap embeddings (cp. Fig. 8 b) trained only
n 10 per cent of the non-meteor data shows the same two clearly
eparable clusters as the t-SNE . Here, the samples belonging to the
ree class seem to form one cluster while birds, clouds, and planes
orm a second cluster with nearly no sample belonging to the first
luster. Furthermore, plane embeddings seem separable from trees 
nd clouds but highly o v erlap with birds and lights. Here, results of
-SNE and Isomap tend to be contradicting. While planes and lights
eem to be nicely separable using Isomap , t-SNE shows that they are
ixed up.
We trained the network used for the feature extraction to separate 

he meteor and non-meteor classes, so it is not surprising that 
he learned features are insufficient to separate the non-meteor 
ubclasses. Ho we v er, this e xperiment shows that some kind of
eparation is possible even with no specialized features, allowing 
or some insights into the data. For future work, there is considerable
otential to achieve good clustering results. It is needed to train 
etw orks lik e siamese netw orks for further insights into the inner
ata fabric [Chechik et al. ( 2010 ) Hoffer & Ailon ( 2015 ), Chen et al.
 2020 )]. 
.3 Experiment iii: anomaly detection 

he anomaly detection experiment is conducted using the auto- 
ncoder setting (cp. 3 ) trained for 200 epochs on a subset of 9000
eteor samples. The remaining 1000 samples are divided into two 

arts of 500 samples each. The first part is used for training a k-
earest neighbours model, and the second for its e v aluation. We
 v aluated the average Euclidean Distance of each sample to its
ve nearest neighbours. The anomaly detection is performed on the 
emaining 10 000 Non Meteor samples. Averaged over all samples, 
he distance for the e v aluation split was 0.53 ± 0.41, which is
ignificantly different from the distance of 1.47 ± 0.52 observed 
or the Non Meteor split. 

Fig. 9 a illustrates that the distribution of the Meteor and
on Meteor classes o v erlap slightly and both have their centre of
ravity about 2 standard deviations distant from each other. We 
herefore utilize a threshold to separate the classes. As Fig. 9 b shows,
 threshold of 0.85 gives the best results. 

Although the classes have significantly different embeddings, 
he y o v erlap too much, and the observ ed F alse Positiv e Rate of
 per cent is too large to be operational. We therefore conclude
hat more refined methods are required to solve the problem of

issing Non Meteor samples if none were av ailable. Ne vertheless,
nomaly detection methods trained with our model can still provide 
 ranked candidate list for outliers and anomalies that do not fit the
eteor data distribution, like non-meteors we already captured in our 

ubclasses or new events like camera artefacts. Moreo v er, our data
et makes such samples available to train classifiers and evaluate 
nomaly detection methods. 

.4 Experiment iv: extrapolation 

e experimented on extrapolation using a simple transformer 
etw ork (Vasw ani et al. 2017 ). The input samples consist of two
oordinates of the brightest pixel per frame, together with the 
espectiv e v elocities. The transformer’s output is fed into another
inear layer with four output neurons. Since the input dimension of
our was too small for the transformer network to learn, we decided
o increase the dimensionality with one linear layer with 64 neurons.

e trained the model using an L2 regression loss. Since we did not
se any regularization like gradient clipping, the transformer started 
ith a high error of 2716236 square pixels and needed about 1000

pochs to get to an error lower than 10. After 1200 epochs, the training
nded at an error rate of 0.73 square pixels. The training needed 22 d
f computation time on a NVIDIA3080Ti GPU. Fig. 10 e x emplarily
hows the sum-images of samples we used in the evaluation. All
ieces belonged to the test set and were not seen during training.
ost samples in the test set belong to the classes meteor and plane.

igs 10 a and b show their path through the field of view. One can see
he object paths’ slight curvatures that the model precisely predicted. 

oreo v er, the accurac y diminishes if the object is faster or changes
ts velocity. Therefore the meteor class shows a larger error than
MNRAS 516, 811–823 (2022) 
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M

(a) (b)

Figure 8. The scatter plots show non-meteor samples embedded into three dimensions. The features are generated using a trained ResNet20 with SPP-Layer. 
The labelled subclasses are highlighted. The colours depict the class non-meteor and the subclasses clouds , birds , planes , trees , rain , and light flashes . 

(a)
(b)

Figure 9. Visualization of the classes’ distributions and the Receiver Operating Characteristic for experiment on anomaly detection. 
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he plane. Figs 10 c, d, and e show slow or stationary objects. Here,
he bird and the tree show the minor error due to the considerable
equence length and the mostly static brightest pixels detected in the
amera view. The most significant error is observed for the cloud
ample with noisy detections with no clear direction. 

 LIMITATIONS  

e are aware that data are biased. Therefore, we outline our
ountermeasures against several types of bias. 

.1.1 Selection bias 

he NightSkyUCP data set consists primarily of ordinary meteors
nd an unbalanced number of subclasses of non-meteors. The data set
NRAS 516, 811–823 (2022) 
ncludes valid image frames from meteors and non-meteors, therefore
on-meteor classes like lens flares or compression artefacts, where
t this point too few to include as specific subclass into the data
et. As the classification accuracy improves, such subclasses will
et more prominent and therefore included into the data set’s future
ersions. The unbalanced character of the non-meteor classpy makes
 classification of subclasses of non-meteors a challenging problem.
e collected 20 000 samples from 2019 to 2021 from several stations

hat co v ered sev eral meteor sho wers, dif ferent weather situations
nd seasons. We collected nearly all false positi ves. Ho we ver, the
ata set lacks samples excluded by our autonomous algorithm
n the first place. Because of this, it might not be suitable for
he classification of fireballs that are rarely present in the data
et. 
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(a) (b)

(c) (d)

(e)

Figure 10. Examples of extrapolations from the first halves of detected sequences chosen from the test set. The yellow colour depicts the input sequence pixel 
coordinates, the light blue depicts the ground truth, and dark blue the predicted pixel coordinates. Halve the sequence length was input and halve was extrapolated. 
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.1.2 Overfitting and underfitting 

verfitting occurs when the data are easily connected to returning 
oise based on the collection process. We intend to counter that by
ollecting samples from different stations that work under different 
onditions. To prevent underfitting, we collected as much data as 
ossible that means 10 000 samples per class. Furthermore, the 
eteor and non-meteor events are mostly from camera stations in 
ermany and the USA, so some possible completely different non- 
eteor events might not have been observed. 

.1.3 Outliers 

xtremely short and extremely long, bright, or large events are very 
nteresting for researchers, so we included as much of them as we
ere able to. 
.1.4 Measurement bias 

ailing measurement methods or devices cause measurement bias. To 
ounter that bias, we used standardized, high-quality cameras with 
alibrated colours and lenses. Models trained on material collected 
ith other cameras that are equally calibrated should therefore have 

qual performance. The events occurring in the sky are, in most
ases, non-meteor events. Since Allsky7 uses simple rules to detect 
o ving ev ents in the sky, it is not entirely assured that every meteor

s detected. The camera hardware could cause this uncertainty, for 
xample, by a too high velocity or a too faint appearance, but also
y the software by code errors or inappropriate detection rules. We
mpirically developed the detection code to maximize the number 
f events and therefore conclude that the number of event types not
MNRAS 516, 811–823 (2022) 
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4 https:// allsky7.net/ 
epresented by our data systematically is low. An analysis of the
erformance of our labelling experts follows underneath. 

.1.5 Observer bias 

his bias occurs when the experimenter unintentionally alters the
esults of the experiment. We performed our experiments on random
amples and performed cross-validation to counter that bias. We also
id not influence the labels or the selection process of the samples. 

.1.6 Exclusion bias 

his bias occurs if the experimenter excludes essential information
ue to its problematic appearance. We did not e xclude an y sample
nd tried to choose more challenging samples intentionally. 

.1.7 Experimentation bias 

lthough we presented various methods and proof of concept for
ifferent experiments, it is not assured that they are optimal. All
resented observations are affected by parameter choices. Never-
heless, the experimentation, code, and data are publicly available
or researchers to reproduce and develop better machine-learning
ethods. 

.1.8 Labeling quality 

e analysed the quality of the samples in the train set and therefore
rew a random sample of 200 events from the data set, consisting of
00 data points per class, to determine the quality of the labels. This
ample was independently checked for label correctness by three
dditional experts. An incorrect label was assumed when any of the
xperts came to this view. The investigation revealed that for 1 of the
00 data points, it could not be said with certainty whether the label
as correct because, according to expert opinion, these events are
ifficult to classify even for humans and represent borderline cases.
e refer to these as weakly labelled in the following. We found

or 2 of the 200 events, a wrong label. We calculated the Clopper-
earson interval Clopper & Pearson ( 1934 ) to determine how many
amples in the data set are weakly labelled. The number of weakly
abelled samples show us the limit of human classification quality.

achine-learning algorithms trained on weakly labelled samples
an advance the limit, providing human operators best guesses for
hallenging samples. In this data set, we calculated the 90 per cent
onfidence interval resulting in a range of [0.0003,0.0235]; this
eans a 90 per cent probability that the correctly labelled proportion

f weakly labelled data lies between 0 . 03 per cent and 2 . 35 per cent .
espectively, for the wrong labelled data, the 90 per cent confidence

nterval results in [0.0018,0.0311]. An algorithm that surpasses
7 per cent accurac y pro vides superhuman performance. 

 CONCLUSIONS  

ur experiments show high accuracy in classification and extrapola-
ion tasks. We observed that unlabelled data that are publicly available
as not sufficient to achieve conclusive feature representations

nd that anomaly detection works not well enough. We therefore
ollected the NightSkyUCP data set that we made public along with
his manuscript to enable researchers to reproduce our experiments
nd develop their methods on detecting meteors in video data. The
ata set consists of 20 000 samples split into 10 000 meteor and
NRAS 516, 811–823 (2022) 
0 000 non-meteor events. A four-step collection process ensures
he high quality of the data set. With this data set, we showed that the
lassification efforts of camera operators could be reduced beyond
uman capabilities. Our experiments on anomaly detection show
hat we cannot provide a high accuracy object classification without
 ne gativ e class. Our observ ation is conclusi ve to other observ ations
hat show that anomaly detection is difficult, if not impossible
Goldstein & Uchida ( 2016 ), Le Lan & Dinh ( 2021 ), Nassif et al.
 2021 ), Pang et al. ( 2021 )]. In our case, we collected and provided
e gativ e class samples. Future work will remain to develop an
nomaly detection algorithm that can learn what meteors are and how
hey are separated from anything else. Those algorithms, ho we ver,
an be e v aluated on our data set. Good candidates for such algorithm
re such that introduce prior knowledge (Le Lan & Dinh 2021 ).
eature-learning tasks gave us insights into the inner structure of the
ata and found that the subclasses share similar feature representation
ut that this is not enough for classification. Therefore, future work
s collecting more data belonging to subclasses. The extrapolation
ask helps us match events that we detect in several smaller parts due
o the obstruction of the trajectory by trees or clouds. Although the
xperiments show proof of concept and a deeper insight into the data
et’s structure, future work is needed to measure the performance of
he presented experimental setups relatively. 
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gefundenen und anderer ihr ̈ahnlicher Eisenmassen und ̈uber einige damit 
in Verbindung stehende Naturerscheinungen, Vol. 1, J.F. Hartknoch, Riga, 
p. 63

lopper C. J., Pearson E. S., 1934, Biometrika, 26, 404 
erus M., 2020, Icarus, 341, 341 
ebru T., Morgenstern J., Vecchione B., Vaughan J. W., Wallach H., Daum ́e

H. III, Crawford K., 2021, Communications of the ACM, 64, 86
oldstein M., Uchida S., 2016, PLoS ONE , 11, 1 
ural P. S., 2019, MNRAS, 489, 5109 
ankey M., Perlerin V., Meisel D., 2020, Planetary and Space Science, 190 
e K., Zhang X., Ren S., Sun J., 2015, IEEE Trans. Pattern Anal. Mach.

Intell., 37, 1904 
e K., Zhang X., Ren S., Sun J., 2016, in Conference on Computer Vision

and Pattern Recognition (CVPR). Deep residual learning for image 
recognition, IEEE, Las Vegas, NV, USA, p. 770 

offer E., Ailon N., 2015, in Deep Metric Learning Using Triplet Network, In-
ternational Workshop on Similarity-Based Pattern Recognition. Springer, 
Cham, p. 84 

ofmann M., M ̈ader P., 2022, IEEE, 33, 3094 
offe S., Szegedy C., 2015, in Batch Normalization: Accelerating Deep 

Network Training by Reducing Internal Covariate Shift, Proceedings 
of the 32nd International Conference on International Conference on 
Machine Learning - Volume 37. ICML’15. JMLR.org. Lille, France, p. 
448 

anches D., Bruzzone J. S., Weryk R. J., Hormaechea J. L., Wiegert P., Brunini
C., 2020, The Astrophysical Journal Letters, 154, 895 

enniskens P., Gural P., Dynneson L., Grigsby B., Newman K., Borden M.,
Koop M., Holman D., 2011, Icarus, 216, 40 

enniskens P. et al., 2018, Planet. Space Sci., 154, 21 
ingma D., Ba J., 2015, Adam: A Method for Stochastic Optimization, ICLR

2015. Ithaca 
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PPENDIX  A:  DATA  SHEET  
1 Moti v ation 

1.1 Introduction 

ur goal for this data set is to stimulate machine learning scientists
o design systems that can classify and detect meteors on video data
luttered with objects such as satellites, airplanes, flares, animals, 
nd plants. Under these circumstances, available methods can not 
ccurately provide conclusive results that are needed to gain a 
eamless o v erview o v er the night sk y . Consequently , the operation
f meteor detection camera systems becomes e xpensiv e. Howev er, 
ther available methods, like radar or satellite-based detection, are 
ore e xpensiv e and often miss smaller objects. Therefore, we made

his data set to reduce the effort of voluntary camera operators to
ncrease the scientific value of wide-area-sky-monitoring. 

1.2 Creator 

AIsy department of the Technical University Ilmenau, Sonneberg 
bservatory and AllSky7 Network 

2 Composition 

2.1 Data description and types 

he data set consists of: 

(i) H264 encoded videos of phenomena inside MPEG-4 container
les. 
(ii) Absolute and relative positions of the phenomenon in the video

nd class information in a CSV file. 
(iii) Corrected sum images of the video files as jpeg image-files.
(iv) Sequences of 32x32 pixel crops as a NUMPY array stack, stored

n python pickle format. 

2.2 Data size 

he data set contains 20 000 samples belonging to two balanced 
lasses. 300 meteor and non-meteor samples were additionally 
alidated by five experts and marked as test samples. A sample
s discarded if anyone expert voted not entirely sure. Therefore, the
est set consists of 297 non-meteor and 277 meteor samples. 

2.3 Data-context 

he NightSkyUCP Data set is a subset of the data collected and
alidated of the ongoing AllSky7 sky observation. Samples initially 
utoclassified as meteor are selected and divided into a meteor 
nd non-meteor classes by experts. It therefore contains only those 
henomena that are considered difficult to classify by classical image 
rocessing techniques. The non-meteor classes are furthermore 
ivided into subclasses. 

2.4 Sample type 

ach sample of an observed phenomenon consists of a video file,
etadata such as class, subclass, subset, position, and velocity, and 

n extracted image stack. 
MNRAS 516, 811–823 (2022) 
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2.5 Sample classes 

ll samples are labelled either meteor or non-meteor . A subset of
16 non-meteor events is further divided into the subclasses clouds ,
irds , planes , trees , rain , and light flashes . 

2.6 Known missing sample data 

ll information needed for the tasks is stored in the data set. There
s no information missing. 

2.7 Description of samples’ relations. 

amples are stored as sum-images, videos, image-stacks, and
etadata-CSV separately. All relations are made explicit. 

2.8 Split policy 

e provide a test split that is re vie wed by fiv e e xperts to pro vide a
aseline for training an algorithm. We recommend an 80:20 or 50:50
plit for conclusive results. 

2.9 Known errors and limitations. 

he quality was by five experts’ opinions e v aluated on 200 samples
100 of each class). Two incorrect samples were found as by two
xperts contradicted the initial classification. One sample was marked
s weakly labelled because experts felt unsure. A Clopper–Pearson
est found a 90 per cent confidence interval of [0.0003, 0.0235] for
eakly labelled data and a 90 per cent confidence interval of [0.0018,
.0311] for wrongly classified data. 

2.10 Needed software to read the data. 

he data is hosted by figshare. To read the stack data, the PYTHON

odule pickle is needed in addition to the JPEG and video H264
ecoders. 

2.11 Confidentiality 

o, the data set does not contain any confidential information. 

2.12 Trauma trig g er s and trig g er warnings 

o, there is no of fensi ve or threatening data included in the data set.
arge fireballs could cause anxiety but are extremely rare, and it is
xtremely uncertain about getting hit by a meteorite. 

2.13 Recording circumstances 

he data were directly recorded as video data at different stations of
he AllSky7-Camera-Network. The data were filtered by the camera
oftware and labelled afterward by two experts. 

2.14 Data sampling techniques 

he pre-labelled by AllSky7 camera software labelled all data
amples as meteors in the first place. Afterwards, the labels were
anually checked by experts 5 and labelled into the meteor and the
NRAS 516, 811–823 (2022) 

 Camera operators and members of the Astronomiemuseum e.V. Sonneberg. 

A

N

eteor-lik e non-meteor class. Afterw ards, we extracted sequences of
mage-stacks, sequences metadata, and sum-images from the videos.

2.15 Data sampling strategy 

e sampled non-meteor data that were labelled by the camera
oftware as a meteor from 2019 to 2021. In this period, we were able
o sample 10 000 events. Afterwards, we probabilistically sampled
0 000 meteor events also recorded in this period. 

2.16 Data sampling worker compensation policy 

ll samples were voluntarily labelled by camera operators and
xperts of the Astronomiemuseum e.V. Sonneberg. The video data
ere saved automatically and was retrieved by a master’s student. 

2.17 Data sampling time frame 

ll samples are recorded between 2019 February and 2021 June. 

2.18 Ethical concerns 

here was no ethical re vie w needed. 

3 Pr e-pr ocessing/cleaning/labelling 

3.1 Data pre-processing 

he raw video data were pre-labelled by the ALLSKY7 camera
oftware and re vie wed by the corresponding camera operator. For
ach video following pre-processing steps were carried out for each
ideo: subtraction of the first frame (removing steady objects), the
entre of gravity detection of the lightest spot, extracting a sequence
s 32x32 pixel stack around the lightest spot, extraction of the
etadata such as the position of the lightest spot and velocity, and

alculation of the sum-image. 

3.2 Raw data location 

he raw videos are provided along with the data set. 

3.3 Data pre-processing software 

he pre-processing event detection software is available at https:
/ github.com/mikehankey/ amscams . Preprocessing scrips and the
eproduction package are contents of the data package. 

4 Uses 

4.1 Data uses 

he classification and clustering models we describe in the main
aper are currently used to recommend labels to AllSky7 camera
perators. 

4.2 Data set landing pa g e 

o, there is no such repository. 

https://github.com/mikehankey/amscams
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4.3 Possible uses 

ther uses could be regression or anomaly detection since our non- 
eteor class can surely be divided into several subclasses. 

4.4 Possible harms 

here are no undesirable harms we can think of. But users should
now that the video data are collected with specific camera systems,
enses, and sensors. Therefore, it is not ensured that the results are
alid in a general case. 

4.5 Excluded purposes 

one. 

5 Distribution 

5.1 Data accessibility 

he data set will be hosted on Figshare and will be accessible to
nyone. 

5.2 Data identifier 

e will provide information on how to use the data as contents of
he data package. The data set will receive a DOI once published. 

5.3 Publication date 

he data set will be distributed in late 2022 March. 

5.4 Data license 

he data set will be free for contribution and non-commercial use 
nder the creative commons license: CC BY-NC-SA. 

5.5 Restrictions 

here will be no restrictions for third parties. 
5.6 Regulatory restrictions 

one. 

6 Maintenance 

6.1 Data owners’ institution 

he data set is maintained by the department dAIsy of the TU Ilme-
au, the Astronomiemuseum e.V. Sonneberg and Rabea Sennlaub. 

6.2 Data owner 

he owner can be contacted through Rabea@Sennlaub.de or 
artin.Hofmann@tu-ilmenau.de . 

6.3 Erratum 

e do not provide an erratum. 
6.4 Data corrections 

pdates will be provided when new data are collected, or more
ubclasses are available. 

6.5 Versioning 

ll versions of the data set will be hosted and maintained in parallel
ntil they are outdated. 

6.6 Contribution policy 

e welcome experts to help the community and us with knowledge
nd new techniques. Finally, we welcome experts to label more data
n more subclasses. 

his paper has been typeset from a T E 
X/L A T E 

X file prepared by the author. 
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