90 research outputs found
Recommended from our members
Syk-dependent Phosphorylation of CLEC-2: A Novel Mechanism of Hem-Immunoreceptor Tyrosine-Based Activation Motif Signaling
The C-type lectin-like receptor CLEC-2 signals via phosphorylation of a single cytoplasmic YXXL sequence known as a hem-immunoreceptor tyrosine-based activation motif (hemITAM). In this study, we show that phosphorylation of CLEC-2 by the snake toxin rhodocytin is abolished in the absence of the tyrosine kinase Syk but is not altered in the absence of the major platelet Src family kinases, Fyn, Lyn, and Src, or the tyrosine phosphatase CD148, which regulates the basal activity of Src family kinases. Further, phosphorylation of CLEC-2 by rhodocytin is not altered in the presence of the Src family kinase inhibitor PP2, even though PLCγ2 phosphorylation and platelet activation are abolished. A similar dependence of phosphorylation of CLEC-2 on Syk is also seen in response to stimulation by an IgG mAb to CLEC-2, although interestingly CLEC-2 phosphorylation is also reduced in the absence of Lyn. These results provide the first definitive evidence that Syk mediates phosphorylation of the CLEC-2 hemITAM receptor with Src family kinases playing a critical role further downstream through the regulation of Syk and other effector proteins, providing a new paradigm in signaling by YXXL-containing receptors
The Measurement Bench for the LHC Spool Corrector Magnets in Industry
The LHC accelerator will be equipped with more than 3500 superconducting spool corrector magnets. CERN has awarded the contract for the series production and testing of these corrector magnets to industry. Magnetic field measurements are done at the factory. Dedicated magnetic measurement benches have been built to test these corrector magnets in the resistive state at room temperature. The benches allow to measure the strength of the main field, normal and skew harmonics, the magnetic axis position and orientation of the main field with respect to the mechanical reference points of the magnet. This paper presents the objectives, a description and the performances obtained with the benches during first measurements at industry
Estimation of contact resistivity in lightning protection equipotential Bonding joints of wind turbine blades
Modern lightning protection systems for wind turbine blades with conducting structural elements, e.g., carbon fiber reinforced polymer (CFRP) spar caps, contain equipotential bonding joints to prevent sparking during strikes. Significant current levels are experienced through the joints and the characterization of the electrical contact at the bonding regions is essential for reliable protection. Therefore, this article aims to characterize the contact resistivity of several equipotential bonding joints. The proposed methodology first measures the total resistance of the samples, and then the bulk resistance of the conductive elements is computed using the finite-element method. The latter is required to predict the spreading effects in CFRP components due to the strong anisotropic nature of such materials. After that, the contact resistance is calculated by subtracting the predicted bulk resistances from the measured total resistances. The developed procedure was applied to three typical equipotential bonding materials: expanded copper foil (ECF), biaxial (BIAX) CFRP, and unidirectional (UD) CFRP. Both ECF and BIAX CFRP showed superior contact quality than the UD CFRP, with one to two orders of magnitude smaller contact resistivity.</p
Combined microwave ablation and osteosynthesis for long bone metastases
Background and Objectives: The purpose of this study was to evaluate the feasibility, safety and efficacy of microwave ablation (MWA) in combination with open surgery nail positioning for the treatment of fractures or impending fractures of long bone metastases. Material and Methods: Eleven patients (four men, seven women) with painful bone metastases of the humerus, femur or tibia with non-displaced fractures (one case) or impending fractures (10 cases) underwent open MWA in combination with osteosynthesis by locked nail positioning. Pain intensity was measured using a VAS score before and after treatment. CT or MRI were acquired at one month before and 1, 3, 6, 12 and 18 months after treatment. Results: All procedures were successfully completed without major complications. The level of pain was significantly reduced one month after treatment. For the patients with humerus metastases, the complete recovery of arm use took 8 weeks, while for the patients with femoral metastases the complete recovery of walking capacity took 11 weeks. The VAS score ranged from 7 (4–9) before treatment to 1.5 (0–2.5) after treatment. During a mid-term follow-up of 18 months (range 4–29 months), none of the patients showed tumor relapse or new fractures in the treated site. Two patients died due to tumor disease progression. Conclusion: Results of this preliminary study suggest that combined MWA and surgical osteosynthesis with locked nails is a safe and effective treatment for pathological fractures or malignant impending fractures of long bone metastases of the humerus, femur and tibia. Further analyses with larger cohorts are warranted to confirm these findings
Development of Superconducting Tuning Quadrupole Corrector (MQT) Prototypes for the LHC
The main quadrupoles of the Large Hadron Collider (LHC) are connected in families of focusing and defocusing magnets. In order to make tuning corrections in the machine a number of quadrupole corrector magnets (designated MQT) are necessary. These 56 mm diameter aperture magnets have to be compact, with a maximum length of 395 mm and a coil radial thickness of 5 to 7.5 mm, while generating a minimum field gradient of 110 T/m. Two design options have been explored, both using the "counter-winding" system developed at CERN for the fabrication of low cost corrector coils. The first design, with the poles composed of two double-pancake coils, each counter-wound using a single wire, superposed to create 4-layer coils, was developed and built by ACCEL Instruments GmbH. A second design where single coils were counter-wound using a 3-wire ribbon to obtain 6-layer coils was developed at CERN. This paper describes the two designs and reports on the performance of the prototypes during testing
DESIGNING OF A RT REAL TIME PCR ASSAY BASED ON NS1 GENE FOR RAPID DETECTION OF USUTU VIRUS (USUV)
Introduction: Usutu virus belongs to the Japanese encephalitis virus group (the isolates exhibited 97% identity) within the family Flaviviridae closely related to West Nile virus (WNV). Both share in nature an enzootic infectious cycle between avian hosts and mosquito vectors (i.e. Culex spp.). The distribution areal is expanding in several European countries, including Italy; the simultaneous spatial and temporal co-circulation of new flaviviruses require a new approaches in the laboratory diagnosis for Flaviviridae infection in humans
Phase Transition in Perovskite Manganites with Orbital Degree of Freedom
Roles of orbital degree of freedom of Mn ions in phase transition as a
function of temperature and hole concentration in perovskite manganites are
studied. It is shown that the orbital order-disorder transition is of the first
order in the wide region of hole concentration and the Nel
temperature for the anisotropic spin ordering, such as the layer-type
antiferromagnetic one, is lower than the orbital ordering temperature due to
the anisotropy in the orbital space. The calculated results of the temperature
dependence of the spin and orbital order parameters explain a variety of the
experiments observed in manganites.Comment: 10 pages, 5 figure
Strain effect on electronic transport and ferromagnetic transition temperature in LaSrMnO thin films
We report on a systematic study of strain effects on the transport properties
and the ferromagnetic transition temperature of high-quality
LaSrMnO thin films epitaxially grown on (100) SrTiO
substrates. Both the magnetization and the resistivity are critically dependent
on the film thickness. is enhanced with decreasing the film thickness
due to the compressive stain produced by lattice mismatch. The resistivity
above 165 K of the films with various thicknesses is consistent with small
polaronic hopping conductivity. The polaronic formation energy is
reduced with the decrease of film thickness. We found that the strain
dependence of mainly results from the strain-induced electron-phonon
coupling. The strain effect on is in good agreement with the
theoretical predictions.Comment: 6 pages and 5 figures, accepted for publication in Phys. Rev.
Single-cell analyses reveal aberrant pathways for megakaryocyte-biased hematopoiesis in myelofibrosis and identify mutant clone-specific targets
Myelofibrosis is a severe myeloproliferative neoplasm characterized by increased numbers of abnormal bone marrow megakaryocytes that induce fibrosis, destroying the hematopoietic microenvironment. To determine the cellular and molecular basis for aberrant megakaryopoiesis in myelofibrosis, we performed single-cell transcriptome profiling of 135,929 CD34+ lineage− hematopoietic stem and progenitor cells (HSPCs), single-cell proteomics, genomics, and functional assays. We identified a bias toward megakaryocyte differentiation apparent from early multipotent stem cells in myelofibrosis and associated aberrant molecular signatures. A sub-fraction of myelofibrosis megakaryocyte progenitors (MkPs) are transcriptionally similar to healthy-donor MkPs, but the majority are disease specific, with distinct populations expressing fibrosis- and proliferation-associated genes. Mutant-clone HSPCs have increased expression of megakaryocyte-associated genes compared to wild-type HSPCs, and we provide early validation of G6B as a potential immunotherapy target. Our study paves the way for selective targeting of the myelofibrosis clone and illustrates the power of single-cell multi-omics to discover tumor-specific therapeutic targets and mediators of tissue fibrosis
Recommended from our members
Regulation of early steps of GPVI signal transduction by phosphatases: a systems biology approach
We present a data-driven mathematical model of a key initiating step in platelet activation, a central process in the prevention of bleeding following Injury. In vascular disease, this process is activated inappropriately and causes thrombosis, heart attacks and stroke. The collagen receptor GPVI is the primary trigger for platelet activation at sites of injury. Understanding the complex molecular mechanisms initiated by this receptor is important for development of more effective antithrombotic medicines. In this work we developed a series of nonlinear ordinary differential equation models that are direct representations of biological hypotheses surrounding the initial steps in GPVI-stimulated signal transduction. At each stage model simulations were compared to our own quantitative, high-temporal experimental data that guides further experimental design, data collection and model refinement. Much is known about the linear forward reactions within platelet signalling pathways but knowledge of the roles of putative reverse reactions are poorly understood. An initial model, that includes a simple constitutively active phosphatase, was unable to explain experimental data. Model revisions, incorporating a complex pathway of interactions (and specifically the phosphatase TULA-2), provided a good description of the experimental data both based on observations of phosphorylation in samples from one donor and in those of a wider population. Our model was used to investigate the levels of proteins involved in regulating the pathway and the effect of low GPVI levels that have been associated with disease. Results indicate a clear separation in healthy and GPVI deficient states in respect of the signalling cascade dynamics associated with Syk tyrosine phosphorylation and activation. Our approach reveals the central importance of this negative feedback pathway that results in the temporal regulation of a specific class of protein tyrosine phosphatases in controlling the rate, and therefore extent, of GPVI-stimulated platelet activation
- …