2,181 research outputs found

    Effect of curvature on the backscattering from leaves

    Get PDF
    Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii

    Plane wave solutions for right‐angled interior impedance wedges

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95650/1/rds5420.pd

    Solution of a second order difference equation using the bilinear relations of Riemann

    Full text link
    A recently proposed technique to solve a class of second order functional difference equations arising in electromagnetic diffraction theory is further investigated by applying it to a case of intermediate complexity. The proposed approach is conceptually simple and relies on first obtaining well-defined branched solutions to a pair of associated first order difference equations. The construction of these branched expressions leads to an equation system whose solution requires relationships akin to Riemann’s bilinear relations for differentials of the first and third kinds; their derivation necessitates the application of Cauchy’s theorem on Riemann surfaces of, in this particular instance, genera one and three. Branch-free solutions of the second order difference equation are then obtained by taking appropriate linear combinations of the branched solutions of the first order equations. Analysis and computation demonstrate that the resulting expressions have the desired analytical properties and recover known solutions in the appropriate limit. © 2002 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71093/2/JMAPAQ-43-3-1598-1.pd

    Diffraction of a Dipole Field by a Perfectly Conducting Half Plane

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116080/1/rds19672111339.pd

    Planar electromagnetic bandgap structures based on polar curves and mapping functions

    Get PDF
    A type of electromagnetic bandgap structure is described that is easily parameterized and can produce a range of square and spiral geometries. Individual electromagnetic bandgap (EBG) geometries are defined on a cell-by-cell basis in terms of their convolution factor , which defines the extent to which the elements are interleaved and controls the coupling slot length between adjacent elements. Polar equations are used to define the slot locus which also incorporate a transformation which ensures the slot extends into the corners of the square unit cell and hence extends the maximum slot length achievable. The electromagnetic properties of the so-called polar EBG are evaluated by means of numerical simulation and measurements and dispersion diagrams are presented. Finally, the performance is compared with other similar miniaturized EBG cell geometries. It is shown that the polar EBG has better angular stability than the equivalent square patch design and is comparable in terms of performance to other low frequency EBG elements. At the same time it retains the ability to fine tune the response by adjusting

    A Theory of Radar Scattering by the Moon

    Get PDF
    A theory is described in which the moon is regarded as a "quasi-smooth" scatterer at radar frequencies. A scattered pulse is then composed of a number of individual returns each of which is provided by a single scattering area. In this manner it is possible to account for all the major features of the pulse, and the evidence in favor of the theory is presented. From a study of the measured power received at different frequencies, it is shown that the scattering area nearest to the earth is the source of a specular return, and it is then possible to obtain information about the material of which the area is composed. The electromagnetic constants are derived and their significance discussed

    High-latitude artificial aurora using the EISCAT high-gain HF facility

    Get PDF
    The EISCAT high-frequency (HF) transmitter facility at Ramfjord, Norway, has been used to accelerate F-region electrons sufficiently to excite the oxygen atoms and nitrogen molecules, resulting in optical emissions at 630, 557.7 and 427.8 nm. During O-mode transmissions at 5.423 MHz, using 630 MW effective radiated power, in the hours after sunset on 12 November 2001 several new observations were made, including: (1) The first high-latitude observation of an HF induced optical emission at 427.8 nm and (2) Optical rings being formed at HF on followed by their collapse into a central blob. Both discoveries remain unexplained with current theories

    Derivation and application of a class of generalized impedance boundary conditions, part 2

    Get PDF
    Boundary conditions involving higher order derivatives are presented by simulating surfaces whose reflection coefficients are known analytically, numerically, or experimentally. Procedures for determining the coefficients of the derivatives are discussed, along with the effect of displacing the surface where the boundary conditions are applied. Provided the coefficients satisfy a duality relation, equivalent forms of the boundary conditions involving tangential field components are deduced, and these provide the natural extension to non-planar surfaces. As an illustration, the simulation of metal-backed uniform and three-layer dielectric coatings is given. It is shown that fourth order conditions are capable of providing an accurate simulation for the uniform coating at least a quarter of a wavelength in thickness. Provided, though, some compromise in accuracy is acceptable, it is also shown that a third order condition may be sufficient for practical purposes when simulating uniform coatings
    corecore