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Abstract 

Boundary conditions involving higher order derivatives are presented for 

simulating surfaces whose reflection coefficients are known analytically, numerically or 

experimentally. Procedures for determining the coefficients of the derivatives are 

discussed, along with the effect of displacing the surface where the boundary 

conditions are applied. Provided the coefficients satisfy a duality relation, equivalent 

forms of the boundary conditions involving tangential field components are deduced, 

and these provide the natural extension to non-planar surfaces. As an illustration, the 

simulation of metal-backed uniform and three layer dielectric coatings is given. It is 

shown that fourth order conditions are capable of providing an accurate simulation for 

the uniform coating at least a quarter of a wavelength in thickness. Provided, though, 

some comprise in accuracy is acceptable, it is also shown that a third order condition 

may be sufficient for practical purposes when simulating uniform coatings. 
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1. Introduction 

The use of non-metallic materials, possibly in the form of a non-uniform or 

multilayer coating applied to a metallic substrate, has made necessary the 

development of methods for simulating material effects in scattering. This is important 

in the analytical treatment of canonical geometries and also for the efficient generation 

of numerical solutions. 

A possible approach is to employ approximate boundary conditions [l], and 

the impedance (or Leontovich) boundary condition [2] has been widely used for this 

purpose. But this condition allows only one degree of freedom through the single 

surface impedance assumed, and there are limits to the surface properties that can be 

simulated in this manner. The inclusion of higher order derivatives of the field 

components on the surface increases the flexibility, and leads to a hierarchy of 

boundary conditions as discussed in this paper. The first order version is equivalent 

to the standard impedance condition. An example of the second order version was 

developed by Weinstein [3] and in [4,5] to simulate thin dielectric layers with and 

without a metal backing. The conditions have also been used [6,7] to simulate a 

perfectly absorbing surface in a finite element analysis of exterior scattering problems. 

In the general version considered here the boundary conditions were first 

employed by Karp and Karal [a] to study the surface waves supported by dielectric 

coatings. For a planar surface the conditions involve the normal derivatives of the 

normal field components, and it is shown here how they can be used to model the 

reflection coefficient of the surface. The required order of the condition increases with 

the complexity of the surface being modelled, and the effect of displacing the surface 

where the boundary condition is enforced is also discussed. To extend the resulting 
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conditions to a non-planar surface, they are first expressed in terms of the tangential 

components of the field, requiring the enforcement of duality. This is the same 

procedure used in the case of the standard (first order) impedance condition [l , 91, and 

it is then found that one effect of the higher order derivatives is to make the conditions 

less local in character through the inclusion of tangential field derivatives. 

To illustrate the application of these conditions, the problem of a planar 

metal-backed uniform dielectric layer is examined in detail. By expanding the known 

reflection coefficient, boundary conditions up to the fourth order are derived. It is 

shown that even for a layer thickness as large as a quarter wavelength, fourth order 

conditions applied at the upper surface of the layer provide an excellent simulation for 

all angles of incidence, and their accuracy is determined. Of course, such higher order 

conditions are not without disadvantages, and their use in analytical and numerical 

work is discussed. 

2. Boundary Conditions for a Planar Surface 

In terms of the Cartesian coordinates x, y, z, the region y < 0 is occupied by a 

laterally homogeneous material which may, however, be stratified or have properties 

varying in depth. For any field incident on this medium we seek a boundary condition 

which can be applied at the surface y = 0 and will accurately reproduce the field in 

y 2 0. 
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The boundary conditions proposed are 

where k is the free space propagation constant and a time factor e-iut has been 

assumed and suppressed. rm and r;, are constants which are chosen to reproduce 

the desired scattering properties of the surface, and since a knowledge of E, or H, 

alone is not in general sufficient to determine an electromagnetic field, the constants 

cannot be chosen independently of one another. 

By expanding out the product factors, the boundary conditions (1) can be 

written in the alternative but equivalent form 

where am and a,' can be expressed in terms of rm and rm' by equating the 

coefficients of like derivatives. As an example, for M = M' = 3, 

a,=rl r2r3 , a, = rl r2 + r2 r3 + r3 rl , 

a2=rl +r2+r, , a3=1  . 
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When M = M' = 1 with r; = 1/ r,, the conditions are equivalent [l] to impedance 

boundary conditions for a surface with normalized impedance r,. They can, therefore, 

be regarded as generalizations of the standard impedance boundary condition that 

allow the simulation of a greater variety of material properties through the inclusion of 

additional derivative factors. 

If the plane wave 

i -ik (x cos@+y sin$) E, = e  

is incident on a surface y = 0 at which the boundary conditions (1) are imposed, the 

implied reflection coefficient is 

with an analogous expression for the reflection coefficient R' (Q) associated with the 

component Hy. The special case rm = 1, m = 1, 2, ..., M, constitutes a model of a 

perfectly absorbing surface [2]. We then have 

and as M increases, there is an increasing range of angles about Q = d 2  (normal 

incidence) where R is effectively zero. 
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More generally, the constants rm and r, can be determined from a knowledge 

of the actual reflection coefficient of the surface, and some possible procedures are as 

follows: 

(i) If analytical expressions for the reflection coefficients are available, 

expansion in the form (3) leads immediately to the identification of r, and r,. 

(ii) The constants can be chosen to recover the poles of the analytical 

expressions, but this may produce a less accurate simulation if the reflection 

coefficient is not a ratio of polynomials in sin$. 

(iii) From computed or measured data for the reflection coefficients, rm and 

r i  can be obtained by curve fitting. Although this could be adequate in any given 

case, it would not reveal the dependence on the material parameters of the surface. 

A few simple examples of a reflection coefficient R (6) are sufficient to 

illustrate these procedures. In general, a plane wave reflection coefficient can be 

written as 

where q ($) is an angle-dependent surface impedance. If q = qo, independent of 

angle, the corresponding boundary condition has rl = qo with rm = 0 for m > 1, and this 

is the standard impedance boundary condition [2]. Alternatively, if 
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then 

with rm = 0 for m > 2. As another example of procedure (i), if 

then for @ I d 4  we can write q(@) = 1 - 1/2 sin2 @ without significant loss of accuracy, in 

which case r, = 0.732 and r2 = -2.732- with rm = 0 for m > 2. For + 2 d 4  we can set 

a = d 2  - @ and use the same approximation for cosa. Alternatively, using procedure 

(ii), it is found that if 0 < Re. @ < d2, R(@) has a single pole at sin@ = 0.707 = - r,. The 

resulting first order boundary condition is obviously not as accurate as the second 

order one given by procedure (i). 

In addition to modelling a reflection coefficient, the generalized boundary 

conditions (1) allow some flexibility in the location of the surface where they are 

enforced. To show this, consider a surface y = 0 at which the reflection coefficient is 

R(@). The corresponding reflection coefficient at y = z is then R(@) exp (2ikz sin@), and 

since 
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1 2 2  
2 1 + ik7 sin@ + -(kz) sin @ + .... 

- - e 2ikTsin' i n n  I 

1 - ikz sin@ + I ( k z ) '  sinL @ - .... 2 

the phase factor can be simulated using additional derivative factors in the boundary 

condition. In particular, if kz is so small that terms 0 {(kT)*} can be neglected, one more 

derivative factor suffices with rl = i/kz, whereas to the next order in kz two derivatives 

are needed with r1,2 = (If i)/(ikz). This allows us to consider separately the modelling 

of the reflection coefficient and the phase factor, but if the location of the simulating 

surface is not specified a priori, it can be chosen to minimize the order of the boundary 

condition for a given accuracy. 

3. Equivalent Forms of the Conditions 

The boundary conditions (1) are scalar conditions in as much as each 

involves only a single field component, but in the first order case when M = M' = 1 with 

r,' = l/rl they can be expressed [9] in terms of the tangential field components as 

E,=f,ZH, , E,=-[, ZH, 

implying 

A 

where n is the unit vector outward normal to the surface. This provides the needed 

extension to a non-planar surface and is the form in which an impedance boundary 

condition is usually stated. In a similar manner, any pair of generalized boundary 

conditions can be expressed in terms of the tangential field components provided rm 
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and rm' are appropriately related, and to illustrate the procedure, we consider the 

second order case. 

The boundary condition for E, is 

- 
and using Maxwell's equations and the fact that V E = 0, this can be written as 

for any function f = f (x,z). Similarly, from the boundary condition for H,, 

and therefore 

a 



1 

- -+ z + r; +r2 mx + r',S2+1 r; +S2 Z&+ az i k ( r J i + i )  1 z3) ax (8) 
ax r; r2 + 1 

for any function g = g (x,z). Choose now 

and 

YEy . r1 s2 + 1 1 

r; +r2 ik (rl +r2) 
g =  

Then, if 

r; +r; rl r2+ 1 

(7) and (8) imply 

and as shown in [2], the only allowed solutions of these equations are zero. 

Hence 
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aHY 

r1 + r 2  ik ( rl + r2) az ik a', r; + 1) ax 
Z- 

r, r2 + 1 1 aEY 1 - -  E, = - ZH, - 

on y = 0. We note that the relation (9) connecting the rm and r i  is equivalent to 

and is a consequence of duality. 

The vector form of (1 0) and (1 1) is 

a2+ a, A - 1 
H + -V[ n * H ]  a1 z n x {  ika, 

and this provides the extension of the second order conditions to a non-planar surface 

since (1 3) is now geometry independent. Similarly, in the third order case we obtain 

1 

Zn + {- ik(a,' + a,') 
a2+a0 A --- - 
a3+a1 

provided 
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is' + a,' 
%' + a,' 

a2 + a, 
a3 + a, 

- - 

or, equivalently, 

r; + r; + r3 + r', r; rj r,r2+r2r3+r3rl + 1 
I ,  r; r; + r; r3 + r3 r, + 1 r, + r2 + r3 + r, r2 r3 

where V, is the surface divergence. The extension of (13) and (14) to still higher order 

boundary conditions is obvious. It is evident from the above that one effect of going to 

higher order boundary conditions is to make them less local through the inclusion of 

tangential derivatives of the fields. 

4. Metal-Backed Layer 

A geometry of practical interest is a uniform dielectric layer of thickness 'I: 

backed by a metal (see Figure 1 ), and we now seek a simulation using generalized 

boundary conditions of the form (1) or (2). In doing so, particular attention is given to 

layers of reasonable thickness since, as discussed below, approximate boundary 

conditions are already available for very thin coatings. For this geometry the exact 

reflection coefficients are known, and we can therefore derive the conditions using 

procedure ( i ) .  These can be referred either to the surface y = O+ of the dielectric layer 

or, by using the expansion (5), to the surface y = -z+ of the metal backing (note that (5) 

is applicable here only after letting z + -2). 
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For an H-polarized plane wave having E, z 0 the reflection coefficient is 

2 2 
JN2 - cos @ tan (kzdN2 - cos @ )  - iesin@ 

where N = & is the complex refractive index, E is the relative permittivity and p 

is the relative permeability of the layer. The corresponding reflection coefficient for 

E-polarization is 

2 2 JN2-cos 4 cot(kzJN2-cos @)+ips ino 

where R($) and R' (4) are both referred to y = O+. Expansion of the tangent and 

cotangent in powers of sin4 leads immediately to the identification of the constants 

a, and a,, but before doing this, it is of interest to examine two boundary conditions 

already available in the literature. 

The most commonly-used boundary condition for simulating a metal-backed 

layer is the standard impedance condition [l]. This is a first order one which can be 

2 
derived from (1 5) and (1 6) by writing N2 - cos 4 = N, giving 

1 N r, = -=- i -tan (Nkz) 
E r ; 
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with all other rm = 0. For kz < 0.52 the conditions can be transferred to the surface 

y = -T+ with a maximum phase error of 10 degrees by employing the first two terms in 

(5). The resulting boundary conditions are then second order ones in which rl and 

r; remain the same and r2 and r; = (ikz)-'. These have been used [4] to simulate a 

metal-backed dielectric half-plane and since they are valid only if IN1 >> 1, they will be 

referred to as high contrast conditions. Low contrast conditions can be derived by 

introducing the approximations tan x = x and cot x = l / x  in (1 7) and (1 8), giving 

2 2 
kz sin @ - ie sin$ + kz (N - 1) 

kzsin $+ie sin$+kz(N -1) e@) = - 2 2 

and 

ikz p sin@ + 1 
ikz p sin@ - 1 

I R' (9) = 

from which the constants a, and a, are easily found. The corresponding boundary 

conditions can be transferred to the surface y = -z+ using the first two terms in the 

expansion (5), and when only the terms of leading order in kz are retained, the 

constants are 

2 a,=kz(N - 1  ) % = l  

a, = ie a, = -ikz (p - 1) 

a2 = -kz (e - 1) % = O .  
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These satisfy (1 1) and the resulting boundary conditions are identical to those derived 

by Weinstein [3] by expanding the fields in the dielectric as Taylor series in y. 

The high and low contrast boundary conditions provide an accurate 

simulation of the coating over the entire angular range only for limited ranges of IN1 

and kz. However, by going to a higher order condition, it is possible to produce a 

simulation that is valid for all IN1 and a wider range of kz. To this end we write 

By also employing the approximation 

R($) can be expressed as 

rn4 
R(@) = - A 

where 

tan (kzN) - tan 2N 2N 

1 + tan (kzN) tan 
2N 
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2N 
1 kz 1 a = -{tan (kzN) -tan (G) + kz (N ---) [l +tan (kzN) tan 

2 2N 2N 

tan (kzN) - tan 2N a 3 = -  - 
2N 

r -, 

a4 = &I1 +tan (kzN) tan 2N 4N2 

Similarly, for E-polarization, 

2N 
2 a, = (2N - 1) 1 +cot (kzN) cot 

2N 

kz 
2N 2N 

kz 
2N 

cot (kzN) - cot 

a2 = 1 + cot (kzN) cot (-) + kz (N - cot (kzN) - cot (-) 

2N 1 + cot (kzN) cot 

a i  = %[cot (kzN) - cot 

The boundary conditions implied by (22) and (23) are referred to the surface 

y = O+ and are fourth order ones which satisfy duality. As expected, their accuracy 

improves with increasing INl/(kz) and in Figure 2 it is shown that they predict the 

correct reflection coefficient for E = 4, p = 1 and z = 0.1h, i.e., Nkz = 1.26. When we set 

a3 = a4 = 0 and a3 = a4 = 0 the resulting boundary conditions are second order ones. 

As evident from Figure 2, their accuracy is substantially less, and the standard 

impedance (first order) conditions are valid only for incidence close to grazing or 

normal. 
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The accuracy of the fourth order boundary conditions is quite remarkable 

even for fairly thick coatings. Since the conditions correctly predict the dominant 

surface wave modes (see comment below), their accuracy is greatest near grazing 

incidence, but even at other angles the phase error is less than 2 degrees with 

coatings up to U4 thick for either polarization and material composition provided 

IN1 > 2. This is illustrated in Figures 3 and 4 where, for E = 2 and 7 with p real, the 

maximum layer thickness for a 2-degree phase error is shown as a function of IN( for 

Q, = 90 and 45 degrees, respectively. It should be noted, in contrast to the standard 

impedance boundary condition, the accuracy of the conditions specified by the 

constants (22) - (23) is least at normal incidence and increases with the refractive 

index and loss in the material coating. 

If a 10 degree error in phase and/or 10% in magnitude is acceptable, a truncated 

form of the fourth order conditions implied by (22) - (23) become useful. Figures 5 to 

10 show the maximum thickness for which the second order (truncated from the fourth) 

condition is capable of predicting the coating's plane wave reflection coefficient within 

10 degrees of its actual phase and/or 10% of its actual magnitude. As seen, in 

comparison with the standard impedance boundary condition, the second order 

condition provides substantially better accuracy for incidence angles away from 

normal. Notably, the simulation improves monotonically as one approaches grazing. 

We may conclude from Figures 5 to 7 that for H-polarization, the second order 

condition is capable of simulating coatings having thickness up to 1/5 of a wavelength 

for incidence angles greater than 35" from normal (55O from grazing). This is 

regardless of the dielectric's properties since the simulation improves substantially as 
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N and/or the loss in the coating increases. In contrast, the 1 st order (standard 

impedance) condition provides a superior simulation with respect to the second order 

condition for the rest of the angular region (i.e. within 35" from normal). Turning to 

Figures 8 to 10 one again arrives at similar conclusions for E-polarization. However, it 

should be noted that for small N the deterioration of the simulation provided by the 

second order condition as normal incidence is approached, is now more rapid. 

Figures 1 1  to 13 show the maximum thickness for which the third order condition 

is capable of predicting the coating's plane wave reflection coefficient within 10 

degrees and/or 10% of its magnitude. It is observed that this condition provides an 

acceptable simulation for coating thickness of at least 0.4h regardless of material 

properties, angle of incidence and polarization. 

For the standard impedance boundary condition, results analogous to those in 

Figure 4 are shown in Figure 14. Even with the allowed phase error increased to 10 

degrees, the maximum layer thickness is substantially less except at normal incidence, 

particularly if IN1 is small. In addition, the accuracy of this boundary condition 

decreases as grazing incidence is approached. 

Higher order boundary conditions for a metal-backed layer can also be 

derived using procedure (ii) of Section 2, which requires a knowledge of the complex 

poles of the reflection coefficients (1 7) and (1 8). The subset lying in the proper half of 

the complex plane are the usual surface wave poles, and the implied expansions of 

the reflection coefficients are 
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sin e, -sin@ 

sin e, + sin@ 
W=-C 

M sin e; -sin+ 

m~ sin e; +sin+ 
R (44 = - c 

where f, = -ik sin 8, and f, = -ik sin e; are the propagation constants for the 

H-polarized (TM) and E-polarized (TE) surface waves, respectively, provided 

Re. (f,, f,) > 0 . 

It has been observed that the accuracy of the approximate boundary 

conditions deteriorates significantly as + decreases unless the correct dominant 

surface wave fields are predicted, and the boundary conditions implied by (22) and 

(23) must therefore correspond to the correct surface wave poles. The number of 

poles (or zeros) of the reflection coefficients (1 7) and (1 8 )  depends on the value of 

Re. (kzN). In the TM case with kzN small, only one pole exists corresponding to the 

lowest order surface wave mode. As kzN increases, two additional poles appear, one 

of which is associated with a surface wave mode when u > K where 

u2 = (kz)2 (N2 - 1) - sin2 $. In the TE case, no poles exist for small kzN, but as kzN 

increases, two poles appear simultaneously, and one of these is associated with the 

lowest order TE surface wave mode when u > 7d2. An examination of the accuracy of 

(24) showed that they provide a good simulation of the reflection coefficients for those 

values of kzN such that the corresponding poles (with sin e,, sin 0; not much greater 
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than unity) have just appeared; however, the accuracy decreases substantially as kzN 

increases beyond the mid point between the last included pole and the next one to 

appear. 

5. Multilayer Metal-Backed Coating 

Of more practical interest is the simulation of multilayer coatings and in this 

section we consider the derivation of higher order boundary conditions applicable to a 

three layer coating with arbitrary constitutive parameters. The geometry of the coating 

is illustrated in Figure 15. For E-polarization (HY # 0) the plane wave reflection 

coefficient referenced to y = O+ can be written as 

where 

1 9  



In the above (pn, E") are the relative constitutive parameters of the nth layer with n = 1 

corresponding to the top layer, tn denotes the thickness of the nth layer, and 

with N, = ,/= and ky, = k sin$. As before, $ is measured from the surface of the 

coating. 

Similarly, for H-polarization (EY f 0) the corresponding reflection coefficient 

referenced to y = O+ is given as 

where now 



To find the constants a, and a, appearing in (2) and (3) we must expand the 

terms sin (kyn zn) and cos (kyn zn) in powers of sin@ The simplest case is to assume 

that kyn tn is sufficiently small so that we may set 

By retaining only terms of 0 (2,) we obtain 

2 
(N: - 1) kz, (Ni - 1) kz2 (N3 - 1) kz, 

a, = +i 

% = k ( -  21 + - 72 +"> 
E1 E;! E3 

and 

(33) a, = -ik (p,~, + ~ 1 2 2 ~  + b z 3 )  

% = O .  
The last set of constants imply a first order condition, but by retaining all terms of the 

expansion we find that 

%=-(a,+%) 

in which 

21 



It is obviously expected that (34) will allow the simulation of thicker layers than (33). 

By their derivation, the boundary conditions implied by the constants in (32), 

(33) or (34) are applicable to very thin coatings ( k t, I 0.6) with moderate values 

of Nn. However, as noted earlier for the single layer coating, higher order conditions 

are required to allow simulations which remain valid for a wider range of Nn and kt,. 

To derive a higher order condition for the three layer coating, we may parallel the 

approach employed for the single layer coating and set 

1 sinL Q ) & = k , / m -  = k (N, - - +- 
2N, 2N, 

This, however, will lead to 12th order condition that is obviously impractical to employ 

analytically or numerically. Instead, a more reasonable approach is to assume that the 

three layers comprising the coating have varying refractive indices. In practice the top 

layer is low contrast dielectric, whereas the bottom layer may be a high contrast 

dielectric. With this assumption we may then set 
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and 

$ 3 = k  JNi-cos 2 0 - k  N, 
(37) 

Employing the above approximations in (26) - (29) after much tedious algebra we find 

that R (@) and R' ($) may be written as 

and 

6 R' ($) = - 

implying a sixth order condition. For H-polarization, the constants are given by 
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2 2  -i e2 (N, - 1) N, z, tan [ (N2 - &) k z2] tan (N, k 73) 

(40) 
iE1&2(N2-w)N3tan 1 (N3k 73) 

1 
=-'lE;!'3 (N2-w) 2 

2 2 1 
+E1E3(N2-1)21 tan [(N2-m) 2 221 

2 + E, ~2 N, tan [ (N2 - &) k z2] tan (N, k 

+E1E2(N2 - -) 2N2 N, z, tan (N, k 7,) 

2 

(41 1 2 1 

2 1 72 1 
%=-iEpEg(Ni -1) (N2-5+1 2 [(N2-%) k72] 

1 2 1 
+i c2 5 (N2 - w) 71 + i ~2 E, (N, -1) -3 

2N2 

+ i ~ 1 ~ 3  tan [ (N2 - &-) k 31 
2 k 72 

+i el % (N2 - 1) 
2N2 2 

2 2  72 

2N2 
-ie2 (N, -1) N z +an (N, k z,) 

2 1 
- i  N, T~ tan [ (N2 - K )  k 72] tan (N3 k 7,) 
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2 1 k72 a,=-i%%(N1-l)-~--tan 
2N2 2N2 

72 
T 1 + i e  E - 4 E  E - 

,2N2 
1 

2 
3 2 ~  

72 -i:N 7 ----tan (N,k 73) 
2N, 

-iE, % w N  -tan [(N --) k ~ ~ ]  tan (N3 k%) 1 k72 1 
2N2 2N2 

1 k72 
a5 = E;! % -- 2N2 2N2 

2 k 72 
+ & E T -  , 2N2 
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1 
N2 - m) 2 k tan (N3 k f3) 

2 1  

1 k72 1 
a 6 = - i 9 5 - 7  2N2 -tan 2N2 [ (N2-- )k~2]  :N2 

Similarly, for E-polarization, we find 

2 2  + p2 (N, - 1) N3 7, tan 

2 2 
- i p1 (N2 - 1) T~ tan 

2 1 
a2=p+JN1 -l)----ltan (N3k7,) 

2N2 

(45) 
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1 
N2 - m) k g ]  tan (N3 kT3) 

2 

2 1 k72 
a4 = - F ~  k (N, - 1) -7 - 

2N2 '2N2 

af5=-p2/+-z 1 - koT2 tan [ (N2-&) k~,] tan (N3 k2,) 
2N2 ' 2N2 2 

(53) 

A detailed examination of the accuracy of the generalized boundary conditions implied 

by the constants (40)-(53) as a function of thickness and constitutive parameters is, of 

course, impractical because of their dependence on numerous geometrical and 

material parameters. However, guidelines on their accuracy can be drawn from the 

single layer simulation presented in the previous section. 
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6. Concluding Remarks 

As illustrated in the case of a metal-backed uniform dielectric layer, the 
I 

generalized boundary conditions (1 ) provide an excellent simulation of the scattering 

1 
properties of the structure for thicknesses up to h/4 or more for all material properties, 

directions of incidence and polarizations. For any other structure whose reflection 

coefficient is known analytically, the appropriate boundary conditions can be derived 

in a similar manner and their accuracy quantified. Alternatively, if only computed or 

measured data for the reflection coefficient are available, the required boundary 

conditions can be found by curve fitting. 

For a boundary condition of any given order, the accuracy achieved 

depends on the location of the surface where the boundary condition is applied, and 

one advantage of the method we have followed is that the location is treated 

separately. In the example discussed, the simulating sheet was placed at the upper 

surface of the dielectric, and a fourth order boundary condition was found to produce 

excellent results. For other locations, it is necessary to expand the phase factor as 

indicated in (5), leading to additional derivative factors in the boundary conditions. 

The optimum location minimizes the complexity of the boundary conditions and/or the 

error in simulation, and the choice of another location could limit the accuracy 

achievable. If, in the above application, the simulating sheet was placed at the metal 

backing, the maximum layer thickness that can be reasonably handled is of order O.lh. 

With the sheet located in this manner, the result of coating the metal is simply to 

replace the perfectly conducting boundary condition with the appropriate generalized 

one. It is then only a trivial extension to simulate a metal coated on both sides. 
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Provided the constants rm and r i  (or a, and a,) satisfy a duality relation 

(see, for example, (15) or (16)) the boundary condition can be expressed in terms of 

the tangential field components. This shows that one effect of the higher order 

derivatives in (1) is to make the boundary conditions less local in character, and the 

resulting "vector" conditions provide the natural extension of (1 ) to non-planar 

surfaces. 

In spite of the apparent complication of the generalized boundary conditions 

and their vector equivalents, it has been found possible to work with them numerically 

and analytically. Regardless of the order of the conditions, a sheet subject to them 

supports only tangential electric and magnetic currents. Thus, in a numerical solution 

of a scattering problem, the number of unknowns is the same as for the standard 

impedance (first order) boundary condition, and to better simulate coated surfaces, we 

have already begun to incorporate the higher order conditions into our existing sheet 

scattering codes employing either the moment or conjugate gradient FFT methods 

[5,10]. 

Analytically, it is important to be able to determine the diffraction coefficient 

for the edge of a half plane or wedge subject to these boundary conditions, and 

thereby extend the capability of GTD scattering codes. In the case of a half plane we 

can use either the Maliuzhinets or Wiener-Hopf techniques and [4] is an example of 

the application of the former, whereas in [11,12] the Wiener-Hopf method was 

employed. Provided care is taken to ensure that all Fourier transforms exist in the 

classical sense, the Wiener-Hopf method can handle generalized boundary conditions 

of any order [13]. The split functions that occur are the same as for a simple 

impedance boundary condition, with each derivative factor in the boundary condition 
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giving rise to a pair of split functions. The edge diffraction coefficient then involves a 

product of these functions. 

The proposed boundary conditions have many possible practical 

I applications. In analytical studies of the scattering from junctions and edges, they can 

be used to model single or multi-layered dielectric slabs or coatings. In numerical 

treatments, thick coatings can be simulated with a single condition on the surface of 

the layer, thus, reducing the required number of unknowns at the expense of a slight 

increase in the complexity of the integral equations. They could also be effective in 

modelling the dielectric layers used in printed circuit and microstrip arrays, leading to a 

significant simplification in the Green's functions involved, and we are now examining 

this possibility. 
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