243 research outputs found
A Spectrally efficient PMR System Utilizing Broadcast Service
Cataloged from PDF version of article.Different trunked Private Mobile Radio (PMR) systems
have been designed over the last several decades, all of which
have symmetric downlink and uplink channel capacities. Due to
this symmetry, these systems may not be spectrally efficient in case
of different types of services, which are specific to PMR systems,
such as group and broadcast calls. In this study, a new asymmetric
trunked PMR system comprising a broadband, wide-area downlink
and a narrowband cellular uplink, is proposed to achieve a
higher spectral efficiency than current digital trunked PMR systems.
This system is spectrally more efficient because in group and
broadcast calls only a single downlink channel has to be allocated
in the downlink part. However, as the number of clusters in the
system increases, this advantage relative to PMR systems is lost,
since the latter can employ frequency reuse. Spectral efficiency of
the proposed asymmetric system (a-PMR) system and a standard
TETRA system are compared using numerical case studies against
different traffic loads and number of clusters. The optimum point,
with respect to number of clusters, up to which the proposed
a-PMR system is more efficient, is determined. It is shown that a
very large PMR user population can be efficiently served using
the proposed a-PMR system. The issues related to implementing
such a system are discussed
The spinal precerebellar nuclei: Calcium binding proteins and gene expression profile in the mouse
We have localized the spinocerebellar neuron groups in C57BL/6J mice by injecting the retrograde neuronal tracer Fluoro-Gold into the cerebellum and examined the distribution of SMI 32 and the calcium-binding proteins (CBPs), calbindin-D-28K (Cb), calretinin (Cr), and parvalbumin (Pv) in the spinal precerebellar nuclei. The spinal precerebellar neuron clusters identified were the dorsal nucleus, central cervical nucleus, lumbar border precerebellar nucleus, lumbar precerebellar nucleus, and sacral precerebellar nucleus. Some dispersed neurons in the deep dorsal horn and spinal laminae 6–8 also projected to the cerebellum. Cb, Cr, Pv, and SMI 32 were present in all major spinal precerebellar nuclei and Pv was the most commonly observed CBP. A number of genes expressed in hindbrain precerebellar nuclei are also expressed in spinal precerebellar groups, but there were some differences in gene expression profile between the different spinal precerebellar nuclei, pointing to functional diversity amongst them
Solutions for the unsteady motion of porous elastic solids within the context of an implicit constitutive theory
In this work we investigate well-posedness for the partial differential equation stemming from the balance of linear momentum for an implicit constitutive relation that can describe the response of porous elastic solids whose material moduli depend on the density. We study heteroclinic travelling waves and obtain closed form analytic solutions for the resulting ordinary differential equation. Finally, we consider some special solutions for the partial differential equation and solve the resulting equations numerically
Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB
We present results of a dark matter search performed with a 0.6 kg day
exposure of the DAMIC experiment at the SNOLAB underground laboratory. We
measure the energy spectrum of ionization events in the bulk silicon of
charge-coupled devices down to a signal of 60 eV electron equivalent. The data
are consistent with radiogenic backgrounds, and constraints on the
spin-independent WIMP-nucleon elastic-scattering cross section are accordingly
placed. A region of parameter space relevant to the potential signal from the
CDMS-II Si experiment is excluded using the same target for the first time.
This result obtained with a limited exposure demonstrates the potential to
explore the low-mass WIMP region (<10 GeV/) of the upcoming DAMIC100, a
100 g detector currently being installed in SNOLAB.Comment: 11 pages, 11 figure
Proteomic and transcriptomic changes in hibernating grizzly bears reveal metabolic and signaling pathways that protect against muscle atrophy
Muscle atrophy is a physiological response to disuse and malnutrition, but hibernating bears are largely resistant to this phenomenon. Unlike other mammals, they efficiently reabsorb amino acids from urine, periodically activate muscle contraction, and their adipocytes differentially responds to insulin. The contribution of myocytes to the reduced atrophy remains largely unknown. Here we show how metabolism and atrophy signaling are regulated in skeletal muscle of hibernating grizzly bear. Metabolic modeling of proteomic changes suggests an autonomous increase of non-essential amino acids (NEAA) in muscle and treatment of differentiated myoblasts with NEAA is sufficient to induce hypertrophy. Our comparison of gene expression in hibernation versus muscle atrophy identified several genes differentially regulated during hibernation, including Pdk4 and Serpinf1. Their trophic effects extend to myoblasts from non-hibernating species (including C. elegans), as documented by a knockdown approach. Together, these changes reflect evolutionary favored adaptations that, once translated to the clinics, could help improve atrophy treatment
Investigation of Staphylococcus strains with heterogeneous resistance to glycopeptides in a Turkish university hospital
BACKGROUND: The hetero-glycopeptide intermediate staphylococci is considered to be the precursor of glycopeptide intermediate staphylococci especially vancomycin intermediate Staphylococcus aureus (VISA). For this purpose, we aimed to investigate the heterogeneous resistance to glycopeptide and their frequencies in 135 Staphylococcus strains. METHODS: Heterogeneous resistance of Staphylococcus strains was detected by inoculating the strains onto Brain Heart Infusion agar supplemented with 4 mg/L of vancomycin (BHA-V4). Agar dilution method was used for determining MICs of glycopeptides and population analysis profile was performed for detecting frequency of heterogeneous resistance for the parents of selected strains on BHA-4. RESULTS: Eight (6%) out of 135 Staphylococcus strains were exhibited heterogeneous resistance to at least one glycopeptide. One (1.2%) out of 81 S. aureus was found intermediate resistance to teicoplanin (MIC 16 mg/L). Other seven strains were Staphylococcus haemolyticus (13%) out of 54 coagulase negative staphylococci (CoNS). Six of the seven strains were detected heterogeneously reducing susceptibility to vancomycin (MICs ranged between 5–8 mg/L) and teicoplanin (MICs ranged between 32–64 mg/L), and one S. haemolyticus was found heterogeneous resistance to teicoplanin (MIC 32 mg/L). Frequencies of heterogeneous resistance were measured being one in 10(6 )– 10(7 )cfu/ml. MICs of vancomycin and teicoplanin for hetero-staphylococci were determined as 2–6 folds and 3–16 folds higher than their parents, respectively. These strains were isolated from six patients (7%) and two (4%) of health care wokers hands. Hetero-VISA strain was not detected. CONCLUSION: Heterogeneous resistance to glycopeptide in CoNS strains was observed to be significantly more emergent than those of S. aureus strains (vancomycin P 0.001, teicoplanin, P 0.007). The increase MICs of glycopeptide resistance for subpopulations of staphylococci comparing with their parents could be an important clue for recognizing the early steps in the appearance of VISA strains. We suggested to screen clinical S. aureus and CoNS strains, systematically, for the presence of heterogeneously resistance to glycopeptide
Comparative proteomic profiling reveals mechanisms for early spinal cord vulnerability in CLN1 disease
CLN1 disease is a fatal inherited neurodegenerative lysosomal storage disease of early childhood, caused by mutations in the CLN1 gene, which encodes the enzyme Palmitoyl protein thioesterase-1 (PPT-1). We recently found significant spinal pathology in Ppt1-deficient (Ppt1−/−) mice and human CLN1 disease that contributes to clinical outcome and precedes the onset of brain pathology. Here, we quantified this spinal pathology at 3 and 7 months of age revealing significant and progressive glial activation and vulnerability of spinal interneurons. Tandem mass tagged proteomic analysis of the spinal cord of Ppt1−/−and control mice at these timepoints revealed a significant neuroimmune response and changes in mitochondrial function, cell-signalling pathways and developmental processes. Comparing proteomic changes in the spinal cord and cortex at 3 months revealed many similarly affected processes, except the inflammatory response. These proteomic and pathological data from this largely unexplored region of the CNS may help explain the limited success of previous brain-directed therapies. These data also fundamentally change our understanding of the progressive, site-specific nature of CLN1 disease pathogenesis, and highlight the importance of the neuroimmune response. This should greatly impact our approach to the timing and targeting of future therapeutic trials for this and similar disorders
Odorant-Binding Proteins of the Malaria Mosquito Anopheles funestus sensu stricto
is one of the major malaria vector species in sub-Saharan Africa. Olfaction is essential in guiding mosquito behaviors. Odorant-binding proteins (OBPs) are highly expressed in insect olfactory tissues and involved in the first step of odorant reception. An improved understanding of the function of malaria mosquito OBPs may contribute to identifying new attractants/repellents and assist in the development of more efficient and environmentally friendly mosquito controlling strategies. female antennae. To compare the absolute efficiency/potency of these chemicals, corrections were made for differences in volatility by determining the exact amount in a stimulus puff. Fourteen AfunOBP genes were cloned and their expression patterns were analyzed. AfunOBP1, 3, 7, 20 and 66 showed olfactory tissue specificity by reverse transcriptase PCR (RT-PCR). Quantitative real-time PCR (qRT-PCR) analysis showed that among olfactory-specific OBPs, AfunOBP1 and 3 are the most enriched OBPs in female antennae. Binding assay experiments showed that at pH 7, AfunOBP1 significantly binds to 2-undecanone, nonyl acetate, octyl acetate and 1-octen-3-ol but AfunOBP3, which shares 68% identify with AfunOBP1 at amino acid level, showed nearly no binding activity to the selected 12 EAG-active odorant compounds. olfactory system, and help developing new mosquito control strategies to reduce malaria transmission
- …