239 research outputs found

    Optimization of culture conditions for high frequency in vitro shoot multiplication in sugarcane (Saccharum officinarum L.)

    Get PDF
    Present study deals with the optimization of various culture conditions for initiating high frequency in vitro shoot multiplication in two early maturing high yielding sugarcane genotypes namely Co98014 & Co89003. On the behalf of the findings of this study, it was concluded that the temperature, photoperiod and culture media pH affected the frequency of in vitro shoot multiplication in both sugarcane genotypes at a significant level. In both genotypes high frequency shoot multiplication was recorded at growth room temperature 25ºC, 16h/8h light/dark photoperiod and culture media pH 6.0. Genotype Co89003 exhibited highest shoot regeneration and multiplication under various culture conditions. The present study suggests the necessity of investigation of these culture conditions separately upon individual sugarcane genotypes prior to develop efficient in vitro plant regeneration protocol for commercial purposes

    Performance Evaluation of Kiln for Cashew Nut Shell Carbonization and Liquid.

    Get PDF
    Abstract Cashew nut shell (CNS) was utilized for carbonization in developed prototype kiln. Prototype kiln was evaluated with direct and indirect methods and characteristics of CNS and CNS char were determined by proximate and ultimate analysis. The maximum CNS temperatures obtained inside the kiln during direct and indirect method were recorded as 452.2℃ and 458.8℃ respectively. Maximum oil percentage, charcoal percentage and ash percentage in direct method were observed as 21.1 per cent, 21.04 per cent and 3.34 per cent respectively whereas 23.8 per cent, 18.3 per cent and 1.27 per cent in indirect method respectively. Hydrogen content in CNS was found about 6 to 7 per cent and nitrogen content in CNS was found about 0.70 to 0.75 per cent. Oxygen content in CNS was observed about 29 to 31 percent. Carbon, hydrogen and nitrogen content of the CNS char were observed in the range of 73 to 76 per cent, 4 to 5 per cent and 1 to 2 per cent respectively. It was found that nitrogen content has increased in CNS char after the carbonization of CNS. Oxygen content in the CNS char gets reduced to 13 to 14 percent, which was comparatively very less than CNS. It was observed that indirect method is more suitable for carbonization than direct method for obtaining higher calorific value char and maximum fixed carbon percentage as found in cashew nut shell char as 60 per cent

    Extraction of hydrocarbons from freshwater green microalgae (Botryococcus sp.) biomass after phycoremediation of domestic wastewater

    Get PDF
    This study was undertaken to analyze the efficiency of Botryococcus sp. in the phycoremediation of domestic wastewater and to determine the variety of hydrocarbons derived from microalgal oil after phycoremediation. The study showed a significant (p < 0.05) reduction of pollutant loads of up to 93.9% chemical oxygen demand, 69.1% biochemical oxygen demand, 59.9% total nitrogen, 54.5% total organic carbon, and 36.8%phosphate. The average dry weight biomass produce was 0.1 g/L of wastewater. In addition, the dry weight biomass of Botryococcus sp. was found to contain 72.5% of crude oil. The composition analysis using Gas Chromatogram - Mass Spectrometry (GC-MS) found that phthalic acid, 2-ethylhexyltridecyl ester (C29H48O4), contributed the highest percentage (71.6%) of the total hydrocarbon compounds to the extracted algae oil. The result of the study suggests that Botryococcus sp. can be used for effective phycoremediation, as well as to provide a sustainable hydrocarbon source as a value-added chemical for the bio-based plastic industry

    The International Collaboration for Research methods Development in Oncology (CReDO) workshops: shaping the future of global oncology research

    Get PDF
    Low-income and middle-income countries (LMICs) have a disproportionately high burden of cancer and cancer mortality. The unique barriers to optimum cancer care in these regions necessitate context-specific research. The conduct of research in LMICs has several challenges, not least of which is a paucity of formal training in research methods. Building capacity by training early career researchers is essential to improve research output and cancer outcomes in LMICs. The International Collaboration for Research methods Development in Oncology (CReDO) workshop is an initiative by the Tata Memorial Centre and the National Cancer Grid of India to address gaps in research training and increase capacity in oncology research. Since 2015, there have been five CReDO workshops, which have trained more than 250 oncologists from India and other countries in clinical research methods and protocol development. Participants from all oncology and allied fields were represented at these workshops. Protocols developed included clinical trials, comparative effectiveness studies, health services research, and observational studies, and many of these protocols were particularly relevant to cancer management in LMICs. A follow-up of these participants in 2020 elicited an 88% response rate and showed that 42% of participants had made progress with their CReDO protocols, and 73% had initiated other research protocols and published papers. In this Policy Review, we describe the challenges to research in LMICs, as well as the evolution, structure, and impact of CReDO and other similar workshops on global oncology research

    Potentiation of Synaptic GluN2B NMDAR Currents by Fyn Kinase Is Gated through BDNF-Mediated Disinhibition in Spinal Pain Processing

    Get PDF
    In chronic pain states, the neurotrophin brain-derived neurotrophic factor (BDNF) transforms the output of lamina I spinal neurons by decreasing synaptic inhibition. Pain hypersensitivity also depends on N-methyl-D-aspartate receptors (NMDARs) and Src-family kinases, but the locus of NMDAR dysregulation remains unknown. Here, we show that NMDAR-mediated currents at lamina I synapses are potentiated in a peripheral nerve injury model of neuropa
    corecore