149 research outputs found

    Evidence for charge orbital and spin stripe order in an overdoped manganite

    Full text link
    We present diffraction data on a single-layered manganite La(0.42)Sr(1.58)MnO4 with hole doping (x>0.5). Overdoped La(0.42)Sr(1.58)MnO4 exhibits a complex ordering of charges, orbitals and spins. Single crystal neutron diffraction experiments reveal three incommensurate and one commensurate order parameters to be tightly coupled. The position and the shape of the distinct superstructure scattering points to a stripe arrangement in which ferromagnetic zigzag chains are disrupted by additional Mn4+ stripes

    Evidence for Multiple Phase Transitions in La_1-xCa_xCoO_3

    Full text link
    We report thermal-expansion and specific-heat data of the series La_1-xCa_xCoO_3 for 0 <= x <= 0.3. For x = 0 the thermal-expansion coefficient alpha(T) features a pronounced maximum around T = 50 K caused by a temperature-dependent spin-state transition from a low-spin state (S=0) at low temperatures towards a higher spin state of the Co^3+ ions. The partial substitution of the La^3+ ions by divalent Ca^2+ ions causes drastic changes in the macroscopic properties of LaCoO_3. Around x ~ 0.125 the large maximum in alpha(T) has completely vanished. With further increasing x three different anomalies develop

    Crystal and magnetic structure of La_{1-x}Sr_{1+x}MnO_{4} : role of the orbital degree of freedom

    Full text link
    The crystal and magnetic structure of La_{1-x}Sr_{1+x}MnO_4 (0<x<0.7) has been studied by diffraction techniques and high resolution capacitance dilatometry. There is no evidence for a structural phase transition like those found in isostructural cuprates or nickelates, but there are significant structural changes induced by the variation of temperature and doping which we attribute to a rearrangement of the orbital occupation.Comment: 8 pages, 6 figures, submitted to PR

    Quantifying TOLNet Ozone Lidar Accuracy During the 2014 DISCOVER-AQ and FRAPP Campaigns

    Get PDF
    The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of the network calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission and the Front Range Air Pollution and Photochemistry xperiment (FRAPP) to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. The TOLNet lidars measured vertical ozone structures with an accuracy generally better than 15 % within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than 5 % for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate that these three TOLNet lidars are suitable for use in air quality, satellite validation, and ozone modeling efforts

    Melting of magnetic correlations in charge-orbital ordered La(0.5)Sr(1.5)MnO(4) : competition of ferro and antiferromagnetic states

    Get PDF
    The magnetic correlations in the charge- and orbital-ordered manganite La(0.5)Sr(1.5)MnO(4) have been studied by elastic and inelastic neutron scattering techniques. Out of the well-defined CE-type magnetic structure with the corresponding magnons a competition between CE-type and ferromagnetic fluctuations develops. Whereas ferromagnetic correlations are fully suppressed by the static CE-type order at low temperature, elastic and inelastic CE-type correlations disappear with the melting of the charge-orbital order at high temperature. In its charge-orbital disordered phase, La(0.5)Sr(1.5)MnO(4) exhibits a dispersion of ferromagnetic correlations which remarkably resembles the magnon dispersion in ferromagnetically ordered metallic perovskite manganites.Comment: 14 pages, 11 figure

    Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    Get PDF
    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes and properties in climate models.United States. Dept. of Energy. Atmospheric System Research Program (Contract DE-AC06-76RLO 1830)United States. National Oceanic and Atmospheric AdministrationUnited States. National Aeronautics and Space Administration. HQ Science Mission Directorate Radiation Sciences ProgramUnited States. National Aeronautics and Space Administration. CALIPSO ProgramUnited States. Dept. of Energy. Atmospheric Radiation Measurement Program (Interagency Agreement No. DE-AI02-05ER63985

    Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions

    Get PDF
    The published literature debates the extent to which naturally occurring stratospheric ozone intrusions reach the surface and contribute to exceedances of the U.S. National Ambient Air Quality Standard (NAAQS) for ground-level ozone (75 ppbv implemented in 2008). Analysis of ozonesondes, lidar, and surface measurements over the western U.S. from April to June 2010 show that a global high-resolution (∼50 × 50 km2) chemistry-climate model (GFDL AM3) captures the observed layered features and sharp ozone gradients of deep stratospheric intrusions, representing a major improvement over previous chemical transport models. Thirteen intrusions enhanced total daily maximum 8-h average (MDA8) ozone to ∼70–86 ppbv at surface sites. With a stratospheric ozone tracer defined relative to a dynamically varying tropopause, we find that stratospheric intrusions can episodically increase surface MDA8 ozone by 20–40 ppbv (all model estimates are bias corrected), including on days when observed ozone exceeds the NAAQS threshold. These stratospheric intrusions elevated background ozone concentrations (estimated by turning off North American anthropogenic emissions in the model) to MDA8 values of 60–75 ppbv. At high-elevation western U.S. sites, the 25th–75th percentile of the stratospheric contribution is 15–25 ppbv when observed MDA8 ozone is 60–70 ppbv, and increases to ∼17–40 ppbv for the 70–85 ppbv range. These estimates, up to 2–3 times greater than previously reported, indicate a major role for stratospheric intrusions in contributing to springtime high-O3events over the high-altitude western U.S., posing a challenge for staying below the ozone NAAQS threshold, particularly if a value in the 60–70 ppbv range were to be adopted

    New features in the phase diagram of TbMnO3_3

    Full text link
    The (H,T)-phase diagram of the multiferroic perovskite TbMnO3_3 was studied by high-resolution thermal expansion α(T)\alpha(T) and magnetostriction ΔL(H)/L\Delta L(H)/L measurements. Below TN42T_{N}\simeq 42 K, TbMnO3_3 shows antiferromagnetic order, which changes at TFE28T_{FE}\simeq 28 K where simultaneously a spontaneous polarization PcP||c develops. Sufficiently high magnetic fields applied along aa or bb induce a polarization flop to PaP||a. We find that all of these transitions are strongly coupled to the lattice parameters. Thus, our data allow for a precise determination of the phase boundaries and also yield information about their uniaxial pressure dependencies. The strongly hysteretic phase boundary to the ferroelectric phase with PaP||a is derived in detail. Contrary to previous reports, we find that even in high magnetic fields there are no direct transitions from this phase to the paraelectric phase. We also determine the various phase boundaries in the low-temperature region related to complex reordering transitions of the Tb moments.Comment: 17 pages including 9 figure
    corecore