43 research outputs found

    Latent Heat Flux Profiles from Collocated Airborne Water Vapor and Wind Lidars during IHOP_2002

    Get PDF
    Latent heat flux profiles in the convective boundary layer (CBL) are obtained for the first time with the combination of the DLR water vapor differential absorption lidar (DIAL) and the NOAA high resolution Doppler wind lidar (HRDL). Both instruments were integrated nadir viewing on board the DLR “Falcon” research aircraft during the International H2O Project (IHOP_2002) over the U.S. Southern Great Plains. Flux profiles from 300 – 2500 m AGL are computed from high spatial resolution (150 m horizontal and vertical) two-dimensional water vapor and vertical velocity lidar cross sections using the eddy covariance technique. All cospectra show significant contributions to the flux between 1 and 10 km wavelength, with peaks between 2 and 6 km, originating from large eddies. The main flux uncertainty is due to low sampling (55 % rmse at mid-CBL), while instrument noise (15 %) and systematic errors (7 %) play a minor role. The combination of a water vapor and a wind lidar on an aircraft appears as an attractive new tool that allows measuring latent heat flux profiles from a single over-flight of the investigated area

    Observation of sensible and latent heat flux profiles with lidar

    Get PDF
    We present the first measurement of the sensible heat flux (H) profile in the convective boundary layer (CBL) derived from the covariance of collocated vertical-pointing temperature rotational Raman lidar and Doppler wind lidar measurements. The uncertainties of the H measurements due to instrumental noise and limited sampling are also derived and discussed. Simultaneous measurements of the latent heat flux profile (L) and other turbulent variables were obtained with the combination of water-vapor differential absorption lidar (WVDIAL) and Doppler lidar. The case study uses a measurement example from the HOPE (HD(CP)2^{2} Observational Prototype Experiment) campaign, which took place in western Germany in 2013 and presents a cloud-free well-developed quasi-stationary CBL. The mean boundary layer height zi_{i} was at 1230 m above ground level. The results show – as expected – positive values of H in the middle of the CBL. A maximum of (182±32) W m2^{-2}, with the second number for the noise uncertainty, is found at 0.5 zi_{i}. At about 0.7 zi_{i}, H changes sign to negative values above. The entrainment flux was (−62±27) W m2^{-2}. The mean sensible heat flux divergence in the observed part of the CBL above 0.3 zi_{i} was −0.28 W m3^{-3}, which corresponds to a warming of 0.83 K h1^{-1}. The L profile shows a slight positive mean flux divergence of 0.12 W m3^{-3} and an entrainment flux of (214±36) W m2^{-2}. The combination of H and L profiles in combination with variance and other turbulent parameters is very valuable for the evaluation of large-eddy simulation (LES) results and the further improvement and validation of turbulence parameterization schemes

    Profiling the molecular destruction rates of temperature and humidity as well as the turbulent kinetic energy dissipation in the convective boundary layer

    Get PDF
    A simultaneous deployment of Doppler, temperature, and water-vapor lidars is able to provide pro- files of molecular destruction rates and turbulent kinetic energy (TKE) dissipation in the convective boundary layer (CBL). Horizontal wind profiles and profiles of vertical wind, temperature, and moisture fluctuations are combined, and transversal temporal autocovariance functions (ACFs) are determined for deriving the dissipation and molecular de- struction rates. These are fundamental loss terms in the TKE as well as the potential temperature and mixing ratio variance equations. These ACFs are fitted to their theoretical shapes and coefficients in the inertial subrange. Error bars are estimated by a propagation of noise errors. Sophisticated analyses of the ACFs are performed in order to choose the correct range of lags of the fits for fitting their theoretical shapes in the inertial subrange as well as for minimizing systematic errors due to temporal and spatial averaging and micro- and mesoscale circulations. We demonstrate that we achieve very consistent results of the derived profiles of turbulent variables regardless of whether 1 or 10 s time resolutions are used

    Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions

    Get PDF
    The published literature debates the extent to which naturally occurring stratospheric ozone intrusions reach the surface and contribute to exceedances of the U.S. National Ambient Air Quality Standard (NAAQS) for ground-level ozone (75 ppbv implemented in 2008). Analysis of ozonesondes, lidar, and surface measurements over the western U.S. from April to June 2010 show that a global high-resolution (∼50 × 50 km2) chemistry-climate model (GFDL AM3) captures the observed layered features and sharp ozone gradients of deep stratospheric intrusions, representing a major improvement over previous chemical transport models. Thirteen intrusions enhanced total daily maximum 8-h average (MDA8) ozone to ∼70–86 ppbv at surface sites. With a stratospheric ozone tracer defined relative to a dynamically varying tropopause, we find that stratospheric intrusions can episodically increase surface MDA8 ozone by 20–40 ppbv (all model estimates are bias corrected), including on days when observed ozone exceeds the NAAQS threshold. These stratospheric intrusions elevated background ozone concentrations (estimated by turning off North American anthropogenic emissions in the model) to MDA8 values of 60–75 ppbv. At high-elevation western U.S. sites, the 25th–75th percentile of the stratospheric contribution is 15–25 ppbv when observed MDA8 ozone is 60–70 ppbv, and increases to ∼17–40 ppbv for the 70–85 ppbv range. These estimates, up to 2–3 times greater than previously reported, indicate a major role for stratospheric intrusions in contributing to springtime high-O3events over the high-altitude western U.S., posing a challenge for staying below the ozone NAAQS threshold, particularly if a value in the 60–70 ppbv range were to be adopted

    Multisensor Estimation of Mixing Heights over a Coastal City

    Get PDF
    © Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (https://www.ametsoc.org/) or from the AMS at 617-227-2425 or [email protected] airborne microwave temperature profiler (MTP) was deployed during the Texas 2000 Air Quality Study (TexAQS-2000) to make measurements of boundary layer thermal structure. An objective technique was developed and tested for estimating the mixed layer (ML) height from the MTP vertical temperature profiles. The technique identifies the ML height as a threshold increase of potential temperature from its minimum value within the boundary layer. To calibrate the technique and evaluate the usefulness of this approach, coincident estimates from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in situ aircraft measurements were compared with each other and with the MTP. Relative biases among all instruments were generally less than 50 m, and the agreement between MTP ML height estimates and other estimates was at least as good as the agreement among the other estimates. The ML height estimates from the MTP and other instruments are utilized to determine the spatial and temporal evolution of ML height in the Houston, Texas, area on 1 September 2000. An elevated temperature inversion was present, so ML growth was inhibited until early afternoon. In the afternoon, large spatial variations in ML height developed across the Houston area. The highest ML heights, well over 2 km, were observed to the north of Houston, while downwind of Galveston Bay and within the late afternoon sea breeze ML heights were much lower. The spatial variations that were found away from the immediate influence of coastal circulations were unexpected, and multiple independent ML height estimates were essential for documenting this feature.Texas Air Research Center National Aeronautics and Space Administration National Oceanic and Atmospheric Administration Texas Commission on Environmental Qualit

    A Bad Air Day in Houston

    Get PDF
    © Copyright 2005 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (https://www.ametsoc.org/) or from the AMS at 617-227-2425 or [email protected] case study from the Texas Air Quality Study 2000 field campaign illustrates the complex interaction of meteorological and chemical processes that produced a high-pollution event in the Houston area on 30 August 2000. High 1-h ozone concentrations of nearly 200 ppb were measured near the surface, and vertical profile data from an airborne differential-absorption lidar (DIAL) system showed that these high-ozone concentrations penetrated to heights approaching 2 km into the atmospheric boundary layer. This deep layer of pollution was transported over the surrounding countryside at night, where it then mixed out the next day to become part of the rural background levels. These background levels thus increased during the course of the multiday pollution episode. The case study illustrates many processes that numerical forecast models must faithfully represent to produce accurate quantitative predictions of peak pollutant concentrations in coastal locations such as Houston. Such accurate predictions will be required for useful air-quality forecasts for urban areas.Southern Oxidant Study Texas Commission on Environmental Qualit
    corecore