99 research outputs found
Microscopic origin of low frequency flux noise in Josephson circuits
We analyze the data and discuss their implications for the microscopic origin
of the low frequency flux noise in superconducting circuits. We argue that this
noise is produced by spins at the superconductor insulator boundary whose
dynamics is due to RKKY interaction. We show that this mechanism explains size
independence of the noise, different frequency dependences of the spectra
reported in large and small SQUIDs and gives the correct intensity for
realistic parameters.Comment: 4 pages, no figure
Magnetism in SQUIDs at Millikelvin Temperatures
We have characterized the temperature dependence of the flux threading dc
SQUIDs cooled to millikelvin temperatures. The flux increases as 1/T as
temperature is lowered; moreover, the flux change is proportional to the
density of trapped vortices. The data is compatible with the thermal
polarization of surface spins in the trapped fields of the vortices. In the
absence of trapped flux, we observe evidence of spin-glass freezing at low
temperature. These results suggest an explanation for the "universal" 1/f flux
noise in SQUIDs and superconducting qubits.Comment: 4 pages, 4 figure
Origin and Suppression of Magnetic Flux Noise
Magnetic flux noise is a dominant source of dephasing and energy relaxation
in superconducting qubits. The noise power spectral density varies with
frequency as with and spans 13 orders of
magnitude. Recent work indicates that the noise is from unpaired magnetic
defects on the surfaces of the superconducting devices. Here, we demonstrate
that adsorbed molecular O is the dominant contributor to magnetism in
superconducting thin films. We show that this magnetism can be suppressed by
appropriate surface treatment or improvement in the sample vacuum environment.
We observe a suppression of static spin susceptibility by more than an order of
magnitude and a suppression of magnetic flux noise power spectral density
by more than a factor of 5. These advances open the door to realization of
superconducting qubits with improved quantum coherence.Comment: Main text: 5 pages, 4 figures. Supplement: 8 pages, 6 figure
Magnetic Resonance Force Microscopy of paramagnetic electron spins at millikelvin temperatures
Magnetic Resonance Force Microscopy (MRFM) is a powerful technique to detect
a small number of spins that relies on force-detection by an ultrasoft
magnetically tipped cantilever and selective magnetic resonance manipulation of
the spins. MRFM would greatly benefit from ultralow temperature operation,
because of lower thermomechanical noise and increased thermal spin
polarization. Here, we demonstrate MRFM operation at temperatures as low as 30
mK, thanks to a recently developed SQUID-based cantilever detection technique
which avoids cantilever overheating. In our experiment, we detect dangling bond
paramagnetic centers on a silicon surface down to millikelvin temperatures.
Fluctuations of such kind of defects are supposedly linked to 1/f magnetic
noise and decoherence in SQUIDs as well as in several superconducting and
single spin qubits. We find evidence that spin diffusion plays a key role in
the low temperature spin dynamics.Comment: 7 pages, 5 figure
Decoherence in rf SQUID Qubits
We report measurements of coherence times of an rf SQUID qubit using pulsed
microwaves and rapid flux pulses. The modified rf SQUID, described by an
double-well potential, has independent, in situ, controls for the tilt and
barrier height of the potential. The decay of coherent oscillations is
dominated by the lifetime of the excited state and low frequency flux noise and
is consistent with independent measurement of these quantities obtained by
microwave spectroscopy, resonant tunneling between fluxoid wells and decay of
the excited state. The oscillation's waveform is compared to analytical results
obtained for finite decay rates and detuning and averaged over low frequency
flux noise.Comment: 24 pages, 13 figures, submitted to the journal Quantum Information
Processin
The gray matter volume of the amygdala is correlated with the perception of melodic intervals: a voxel-based morphometry study
Music is not simply a series of organized pitches, rhythms, and timbres, it is capable of evoking emotions. In the present study, voxel-based morphometry (VBM) was employed to explore the neural basis that may link music to emotion. To do this, we identified the neuroanatomical correlates of the ability to extract pitch interval size in a music segment (i.e., interval perception) in a large population of healthy young adults (N = 264). Behaviorally, we found that interval perception was correlated with daily emotional experiences, indicating the intrinsic link between music and emotion. Neurally, and as expected, we found that interval perception was positively correlated with the gray matter volume (GMV) of the bilateral temporal cortex. More important, a larger GMV of the bilateral amygdala was associated with better interval perception, suggesting that the amygdala, which is the neural substrate of emotional processing, is also involved in music processing. In sum, our study provides one of first neuroanatomical evidence on the association between the amygdala and music, which contributes to our understanding of exactly how music evokes emotional responses
- …