356 research outputs found

    Nominal Stability and Financial Globalization

    Get PDF
    Over the one and a half decades prior to the global financial crisis, advanced economies experienced a large growth in gross external portfolio positions. This phenomenon has been described as Financial Globalization. Over roughly the same time frame, most of these countries also saw a substantial fall in the level and variability of inflation. Many economists have conjectured that financial globalization contributed to the improved performance in the level and predictability of inflation. In this paper, we explore the causal link running in the opposite direction. We show that a monetary policy rule which reduces inflation variability leads to an increase in the size of gross external positions, both in equity and bond portfolios. This is a highly robust prediction of open economy macro models with endogenous portfolio choice. It holds across many different modeling specifications and parameterizations. We also present preliminary empirical evidence which shows a negative relationship between inflation volatility and the size of gross external positions.

    Nominal Stability and Financial Globalization

    Get PDF
    Over the past four decades, there has been a substantial increase in financial globalization, that is, rapid growth in gross external portfolio positions. There has also been a substantial fall in the variability of inflation. Many economists have conjectured that financial globalization contributed to the improved inflation performance. This paper explores the causal link running in the opposite direction. Using an open economy model with endogenous portfolio choice, it is shown that a monetary rule that reduces inflation variability tends to increase the size of gross external asset positions. This result appears to be robust across different modeling specifications.PostprintPeer reviewe

    The Grand Ethiopian Renaissance Dam: Source of Cooperation or Contention?

    Get PDF
    This paper discusses the challenges and benefits of the Grand Ethiopian Renaissance Dam (GERD), which is under construction and expected to be operational on the Blue Nile River in Ethiopia in a few years. Like many large-scale projects on transboundary rivers, the GERD has been criticized for potentially jeopardizing downstream water security and livelihoods through upstream unilateral decision making. In spite of the contentious nature of the project, the authors argue that this project can provide substantial benefits for regional development. The GERD, like any major river infrastructure project, will undeniably bring about social, environmental, and economic change, and in this unique case has, on balance, the potential to achieve success on all fronts. It must be stressed, however, that strong partnerships between riparian countries are essential. National success is contingent on regional cooperation

    Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin

    Get PDF
    AbstractEvapotranspiration (ET) mapping at the Landsat spatial resolution (100m) is essential to fully understand water use and water availability at the field scale. Water use estimates in the Colorado River Basin (CRB), which has diverse ecosystems and complex hydro-climatic regions, will be helpful to water planners and managers. Availability of Landsat 8 images, starting in 2013, provides the opportunity to map ET in the CRB to assess spatial distribution and patterns of water use. The Operational Simplified Surface Energy Balance (SSEBop) model was used with 528 Landsat 8 images to create seamless monthly and annual ET estimates at the inherent 100m thermal band resolution. Annual ET values were summarized by land use/land cover classes. Croplands were the largest consumer of “blue” water while shrublands consumed the most “green” water. Validation using eddy covariance (EC) flux towers and water balance approaches showed good accuracy levels with R2 ranging from 0.74 to 0.95 and the Nash–Sutcliffe model efficiency coefficient ranging from 0.66 to 0.91. The root mean square error (and percent bias) ranged from 0.48mm (13%) to 0.60mm (22%) for daily (days of satellite overpass) ET and from 7.75mm (2%) to 13.04mm (35%) for monthly ET. The spatial and temporal distribution of ET indicates the utility of Landsat 8 for providing important information about ET dynamics across the landscape. Annual crop water use was estimated for five selected irrigation districts in the Lower CRB where annual ET per district ranged between 681mm to 772mm. Annual ET by crop type over the Maricopa Stanfield irrigation district ranged from a low of 384mm for durum wheat to a high of 990mm for alfalfa fields. A rainfall analysis over the five districts suggested that, on average, 69% of the annual ET was met by irrigation. Although the enhanced cloud-masking capability of Landsat 8 based on the cirrus band and utilization of the Fmask algorithm improved the removal of contaminated pixels, the ability to reliably estimate ET over clouded areas remains an important challenge. Overall, the performance of Landsat 8 based ET compared to available EC datasets and water balance estimates for a complex basin such as the CRB demonstrates the potential of using Landsat 8 for annual water use estimation at a national scale. Future efforts will focus on (a) use of consistent methodology across years, (b) integration of multiple sensors to maximize images used, and (c) employing cloud-computing platforms for large scale processing capabilities

    A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields

    Get PDF
    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250-m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between upstream and downstream basins. A major advantage of the energy-balance approach is that it can be used to quantify spatial extent of irrigated fields and their water-use dynamics without reference to source of water as opposed to a water-balance model which requires knowledge of both the magnitude and temporal distribution of rainfall and irrigation applied to fields

    Evapotranspiration in the Nile Basin: Identifying Dynamics, Trends, and Drivers 2002-2011

    Get PDF
    Analysis of the relationship between evapotranspiration (ET) and its natural and anthropogenic drivers is critical in water-limited basins such as the Nile. The spatiotemporal relationships of ET with rainfall and vegetation dynamics in the Nile Basin during 2002–2011 were analyzed using satellite-derived data. Non-parametric statistics were used to quantify ET-rainfall interactions and trends across land cover types and subbasins. We found that 65% of the study area (2.5 million km2) showed significant (p \u3c 0.05) positive correlations between monthly ET and rainfall, whereas 7% showed significant negative correlations. As expected, positive ET-rainfall correlations were observed over natural vegetation, mixed croplands/natural vegetation, and croplands, with a few subbasin-specific exceptions. In particular, irrigated croplands, wetlands and some forests exhibited negative correlations. Trend tests revealed spatial clusters of statistically significant trends in ET (6% of study area was negative; 12% positive), vegetation greenness (24% negative; 12% positive) and rainfall (11% negative; 1% positive) during 2002–2011. The Nile Delta, Ethiopian highlands and central Uganda regions showed decline in ET while central parts of Sudan, South Sudan, southwestern Ethiopia and northeastern Uganda showed increases. Except for a decline in ET in central Uganda, the detected changes in ET (both positive and negative) were not associated with corresponding changes in rainfall. Detected declines in ET in the Nile delta and Ethiopian highlands were found to be attributable to anthropogenic land degradation, while the ET decline in central Uganda is likely caused by rainfall reduction

    Assessing the potential hydrological impact of the Gibe III Dam on Lake Turkana water level using multi-source satellite data

    Get PDF
    Lake Turkana, the largest desert lake in the world, is fed by ungauged or poorly gauged river systems. To meet the demand of electricity in the East African region, Ethiopia is currently building the Gibe III hydroelectric dam on the Omo River, which supplies more than 80% of the inflows to Lake Turkana. On completion, the Gibe III dam will be the tallest dam in Africa with a height of 241 m. However, the nature of interactions and potential impacts of regulated inflows to Lake Turkana are not well understood due to its remote location and unavailability of reliable in situ datasets. In this study, we used 12 yr (1998–2009) of existing multi-source satellite and model-assimilated global weather data. We used a calibrated multi-source satellite data-driven water balance model for Lake Turkana that takes into account model routed runoff, lake/reservoir evapotranspiration, direct rain on lakes/reservoirs and releases from the dam to compute lake water levels. The model evaluates the impact of the Gibe III dam using three different approaches – a historical approach, a rainfall based approach, and a statistical approach to generate rainfall-runoff scenarios. All the approaches provided comparable and consistent results. Model results indicated that the hydrological impact of the Gibe III dam on Lake Turkana would vary with the magnitude and distribution of rainfall post-dam commencement. On average, the reservoir would take up to 8–10 months, after commencement, to reach a minimum operation level of 201 m depth of water. During the dam filling period, the lake level would drop up to 1–2 m (95% confidence) compared to the lake level modeled without the dam. The lake level variability caused by regulated inflows after the dam commissioning were found to be within the natural variability of the lake of 4.8 m. Moreover, modeling results indicated that the hydrological impact of the Gibe III dam would depend on the initial lake level at the time of dam commencement. Areas along the Lake Turkana shoreline that are vulnerable to fluctuations in lake levels due to the Gibe III dam were also identified. This study demonstrates the effectiveness of using existing multi-source satellite data in a basic modeling framework to assess the potential hydrological impact of an upstream dam on a terminal downstream lake. The results obtained from this study could also be used to evaluate alternative dam-filling scenarios and assess the potential impact of the dam on Lake Turkana under different operational strategies

    Using the Communication in Science Inquiry Project professional development model to facilitate learning middle school genetics concepts

    Get PDF
    This study describes the effect of embedding content in the Communication in Inquiry Science Project professional development model for science and language arts teachers. The model uses four components of successful professional development (content focus, active learning, extended duration, participation by teams of teachers from the same school or grade level) and instructional strategies for inquiry, academic language development, written and oral discourse, and learning principles as components of science activities. Teachers were given a pre/ post-institute genetics assessment. There was a statistically significant increase in scores for the entire sample and a statistically significant difference between science and language arts pre and post scores, with science teachers scoring higher in both cases

    Manipulation of High Spatial Resolution Aircraft Remote Sensing Data for Use in Site-Specific Farming

    Get PDF
    Three spatial data sets consisting of high spatial resolution (1 m) remote sensing images acquired in 12 spectral bands, an on-the-go yield map, and a Digital Elevation Model were co-registered and evaluated for spatial variability studies in a Geographic Information Systems environment. Separate on-the-go yield maps were developed for 3, 5, and 12 statistically significant mean yield classes. For each yield class, the corresponding mean spectral and elevation data were extracted. The relationship between mean spectral and yield data was strongly linear (r = 0.99). Also, a strong linear relationship between mean yield and elevation data (r = 0.92) was found. The relationship between the spectral and on-the-go yield data indicated the potential of remote sensing for spatial variability studies
    • …
    corecore