4,645 research outputs found

    Phase transitions in Ising model on a Euclidean network

    Full text link
    A one dimensional network on which there are long range bonds at lattice distances l>1l>1 with the probability P(l)lδP(l) \propto l^{-\delta} has been taken under consideration. We investigate the critical behavior of the Ising model on such a network where spins interact with these extra neighbours apart from their nearest neighbours for 0δ<20 \leq \delta < 2. It is observed that there is a finite temperature phase transition in the entire range. For 0δ<10 \leq \delta < 1, finite size scaling behaviour of various quantities are consistent with mean field exponents while for 1δ21\leq \delta\leq 2, the exponents depend on δ\delta. The results are discussed in the context of earlier observations on the topology of the underlying network.Comment: 7 pages, revtex4, 7 figures; to appear in Physical Review E, minor changes mad

    Dynamics of unvisited sites in presence of mutually repulsive random walkers

    Full text link
    We have considered the persistence of unvisited sites of a lattice, i.e., the probability S(t)S(t) that a site remains unvisited till time tt in presence of mutually repulsive random walkers. The dynamics of this system has direct correspondence to that of the domain walls in a certain system of Ising spins where the number of domain walls become fixed following a zero termperature quench. Here we get the result that S(t)exp(αtβ)S(t) \propto \exp(-\alpha t^{\beta}) where β\beta is close to 0.5 and α\alpha a function of the density of the walkers ρ\rho. The number of persistent sites in presence of independent walkers of density ρ\rho^\prime is known to be S(t)=exp(22πρt1/2)S^\prime (t) = \exp(-2 \sqrt{\frac{2}{\pi}} \rho^\prime t^{1/2}). We show that a mapping of the interacting walkers' problem to the independent walkers' problem is possible with ρ=ρ/(1ρ)\rho^\prime = \rho/(1-\rho) provided ρ,ρ\rho^\prime, \rho are small. We also discuss some other intricate results obtained in the interacting walkers' case.Comment: 6 pages, 7 figure

    Statistics of leading digits leads to unification of quantum correlations

    Full text link
    We show that the frequency distribution of the first significant digits of the numbers in the data sets generated from a large class of measures of quantum correlations, which are either entanglement measures, or belong to the information-theoretic paradigm, exhibit a universal behaviour. In particular, for Haar uniformly simulated arbitrary two-qubit states, we find that the first-digit distribution corresponding to a collection of chosen computable quantum correlation quantifiers tend to follow the first-digit law, known as the Benford's law, when the rank of the states increases. Considering a two-qubit state which is obtained from a system governed by paradigmatic spin Hamiltonians, namely, the XY model in a transverse field, and the XXZ model, we show that entanglement as well as information theoretic measures violate the Benford's law. We quantitatively discuss the violation of the Benford's law by using a violation parameter, and demonstrate that the violation parameter can signal quantum phase transitions occurring in these models. We also comment on the universality of the statistics of first significant digits corresponding to appropriate measures of quantum correlations in the case of multipartite systems as well as systems in higher dimensions.Comment: v1: 11 pages, 5 figures, 2 tables; v2: 11 pages, 6 figures, 2 tables, new results added, extended version of the published pape

    Microbial transformation of xenobiotics for environmental bioremediation

    Get PDF
    The accumulation of recalcitrant xenobiotic compounds is due to continuous efflux from population and industrial inputs that have created a serious impact on the pristine nature of our environment. Apart from this, these compounds are mostly carcinogenic, posing health hazards which persist over a long period of time. Metabolic pathways and specific operon systems have been found in diverse but limited groups of microbes that are responsible for the transformation of xenobiotic compounds.Distinct catabolic genes are either present on mobile genetic elements, such as transposons and plasmids, or the chromosome itself that facilitates horizontal gene transfer and enhances the rapid microbial transformation of toxic xenobiotic compounds. Biotransformation of xenobiotic compounds in natural environment has been studied to understand the microbial ecology, physiology and evolution for their potential in bioremediation. Recent advance in the molecular techniques including DNA fingerprinting, microarrays and metagenomics is being used to augment the transformation of xenobiotic compounds. The present day understandings of aerobic, anaerobic and reductive biotransformation by co-metabolic processes and an overview of latest developments in monitoring the catabolic genes of xenobiotic-degrading bacteria are discussed elaborately in this work. Till date, several reviews have come up, highlighting the problem of xenobiotic pollution, yet a comprehensiveunderstanding of the microbial biodegradation of xenobiotics and its application is in nascent stage. Therefore, this is an attempt to understand the microbial role in biotransformation of xenobiotic compounds in context to the modern day biotechnology

    Superconductivity and charge carrier localization in ultrathin La1.85Sr0.15CuO4/La2CuO4\mathbf{{La_{1.85}Sr_{0.15}CuO_4}/{La_2CuO_4}} bilayers

    Get PDF
    La1.85Sr0.15CuO4\mathrm{La_{1.85}Sr_{0.15}CuO_4}/La2CuO4\mathrm{La_2CuO_4} (LSCO15/LCO) bilayers with a precisely controlled thickness of N unit cells (UCs) of the former and M UCs of the latter ([LSCO15\_N/LCO\_M]) were grown on (001)-oriented {\slao} (SLAO) substrates with pulsed laser deposition (PLD). X-ray diffraction and reciprocal space map (RSM) studies confirmed the epitaxial growth of the bilayers and showed that a [LSCO15\_2/LCO\_2] bilayer is fully strained, whereas a [LSCO15\_2/LCO\_7] bilayer is already partially relaxed. The \textit{in situ} monitoring of the growth with reflection high energy electron diffraction (RHEED) revealed that the gas environment during deposition has a surprisingly strong effect on the growth mode and thus on the amount of disorder in the first UC of LSCO15 (or the first two monolayers of LSCO15 containing one CuO2\mathrm{CuO_2} plane each). For samples grown in pure N2O\mathrm{N_2O} gas (growth type-B), the first LSCO15 UC next to the SLAO substrate is strongly disordered. This disorder is strongly reduced if the growth is performed in a mixture of N2O\mathrm{N_2O} and O2\mathrm{O_2} gas (growth type-A). Electric transport measurements confirmed that the first UC of LSCO15 next to the SLAO substrate is highly resistive and shows no sign of superconductivity for growth type-B, whereas it is superconducting for growth type-A. Furthermore, we found, rather surprisingly, that the conductivity of the LSCO15 UC next to the LCO capping layer strongly depends on the thickness of the latter. A LCO capping layer with 7~UCs leads to a strong localization of the charge carriers in the adjacent LSCO15 UC and suppresses superconductivity. The magneto-transport data suggest a similarity with the case of weakly hole doped LSCO single crystals that are in a so-called {"{cluster-spin-glass state}"

    Effect of GNP/Ni-TiO2 Nanocomposite Coated Copper Surfaces Fabricated by Electro Chemical Deposition under Nucleate Pool Boiling Regime: A Comprehensive Experimental Study

    Get PDF
    Current study presents an experimental analysis of nucleate pool boiling on the GNP/Ni-TiO2 (GNP-graphene nano particle) nano-composite coated copper surfaces. In order to produce the microporous surfaces, a two-step electro-deposition process is used. This deposition results in the formation of a modified surface structure, and various surface morphological characteristics of this modified structure, like wettability, roughness and surface structure are studied. The results reveal an improvement in CHF (critical heat flux) and BHTC (boiling heat transfer coefficient) in case of GNP/Ni-TiO2 coated surfaces. The main elements influencing the improved heat transfer of the GNP/Ni-TiO2nano-composite coating are its increased wettability, roughness, and high thermal conductivity. The SNCCC (superhydrophilic nano-composite coated copper) surfaces have the maximum BHTC of 97.52 (kW/m2K) and CHF of 2043 (kW/m2), which are 93% and 88% higher than the base Cu surfaces respectively. Here, it is analysed how the performance of SNCCC surfaces are enhanced by the impact of different parameters, like the roughness of the surface and wettability. The bubble characteristics at the time of boiling is noticed using a high-speed camera, and several factors such as nucleation site density, bubble departure diameter, and bubble emission frequency are statistically studied for SNCCC surfaces

    Infinite-range Ising ferromagnet in a time-dependent transverse field: quench and ac dynamics near the quantum critical point

    Full text link
    We study an infinite range ferromagnetic Ising model in the presence of a transverse magnetic field which exhibits a quantum paramagnetic-ferromagnetic phase transition at a critical value of the transverse field. In the thermodynamic limit, the low-temperature properties of this model are dominated by the behavior of a single large classical spin governed by an anisotropic Hamiltonian. Using this property, we study the quench and AC dynamics of the model both numerically and analytically, and develop a correspondence between the classical phase space dynamics of a single spin and the quantum dynamics of the infinite-range ferromagnetic Ising model. In particular, we compare the behavior of the equal-time order parameter correlation function both near to and away from the quantum critical point in the presence of a quench or AC transverse field. We explicitly demonstrate that a clear signature of the quantum critical point can be obtained by studying the AC dynamics of the system even in the classical limit. We discuss possible realizations of our model in experimental systems.Comment: Revtex4, 10 pages including 10 figures; corrected a sign error in Eq. 32; this is the final published versio

    Depth profile of the ferromagnetic order in a YBa2_2Cu3_3O7_7 / La2/3_{2/3}Ca1/3_{1/3}MnO3_3 superlattice on a LSAT substrate: a polarized neutron reflectometry study

    Full text link
    Using polarized neutron reflectometry (PNR) we have investigated a YBa2Cu3O7(10nm)/La2/3Ca1/3MnO3(9nm)]10 (YBCO/LCMO) superlattice grown by pulsed laser deposition on a La0.3Sr0.7Al0.65Ta0.35O3 (LSAT) substrate. Due to the high structural quality of the superlattice and the substrate, the specular reflectivity signal extends with a high signal-to-background ratio beyond the fourth order superlattice Bragg peak. This allows us to obtain more detailed and reliable information about the magnetic depth profile than in previous PNR studies on similar superlattices that were partially impeded by problems related to the low temperature structural transitions of the SrTiO3 substrates. In agreement with the previous reports, our PNR data reveal a strong magnetic proximity effect showing that the depth profile of the magnetic potential differs significantly from the one of the nuclear potential that is given by the YBCO and LCMO layer thickness. We present fits of the PNR data using different simple block-like models for which either a ferromagnetic moment is induced on the YBCO side of the interfaces or the ferromagnetic order is suppressed on the LCMO side. We show that a good agreement with the PNR data and with the average magnetization as obtained from dc magnetization data can only be obtained with the latter model where a so-called depleted layer with a strongly suppressed ferromagnetic moment develops on the LCMO side of the interfaces. The models with an induced ferromagnetic moment on the YBCO side fail to reproduce the details of the higher order superlattice Bragg peaks and yield a wrong magnitude of the average magnetization. We also show that the PNR data are still consistent with the small, ferromagnetic Cu moment of 0.25muB that was previously identified with x-ray magnetic circular dichroism and x-ray resonant magnetic reflectometry measurements on the same superlattice.Comment: 11 pages, 7 figure
    corecore