176 research outputs found

    Electrophoresis separator combining centrifugal separation

    Get PDF
    Centrifugal force causes buffer, chosen to be denser than particles, to move outward and particles to move inward. Electrophoresis force can be made to equal centrifugal force. System tends not to be affected by convection and other disturbances that are so troublesome in conventional electrophoresis systems

    A conceptual design study of a high temperature solar thermal receiver (added tasks 6 and 7)

    Get PDF
    The key component of this concept is a coiled tube of silicon nitride which acts as a heat exchanger appears to be ideal from the standpoint of utilizing structural ceramics at around 2500 F under severe thermal shock conditions. However the size and configuration of this coil are beyond the state of the art for fabricating such materials as silicon nitride and carbide. A two-task program to develop and demonstrate the feasibility of extruding and forming a section of thin walled silicon nitride tubing was undertaken as an addition to the original program. A promising polyvinyl butyral-based binder lubricant was identified. Fourteen full size extrusion experiments were conducted. Two trial firings of 1-1/4 turn helices were made

    General relativistic corrections to the Sagnac effect

    Get PDF
    The difference in travel time of corotating and counter-rotating light waves in the field of a central massive and spinning body is studied. The corrections to the special relativistic formula are worked out in a Kerr field. Estimation of numeric values for the Earth and satellites in orbit around it show that a direct measurement is in the order of concrete possibilities.Comment: REVTex, accepted for publication on Phys. Rev.

    Simultaneity and generalized connections in general relativity

    Full text link
    Stationary extended frames in general relativity are considered. The requirement of stationarity allows to treat the spacetime as a principal fiber bundle over the one-dimensional group of time translations. Over this bundle a connection form establishes the simultaneity between neighboring events accordingly with the Einstein synchronization convention. The mathematics involved is that of gauge theories where a gauge choice is interpreted as a global simultaneity convention. Then simultaneity in non-stationary frames is investigated: it turns to be described by a gauge theory in a fiber bundle without structure group, the curvature being given by the Fr\"olicher-Nijenhuis bracket of the connection. The Bianchi identity of this gauge theory is a differential relation between the vorticity field and the acceleration field. In order for the simultaneity connection to be principal, a necessary and sufficient condition on the 4-velocity of the observers is given.Comment: RevTeX, 9 pages, 2 figures, 1 table. Previous title "The gauge nature of simultaneity". Classical and Quantum Gravity http://www.iop.org/EJ/journal/CQ

    Recombination facilitates neofunctionalization of duplicate genes via originalization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently originalization was proposed to be an effective way of duplicate-gene preservation, in which recombination provokes the high frequency of original (or wild-type) allele on both duplicated loci. Because the high frequency of wild-type allele might drive the arising and accumulating of advantageous mutation, it is hypothesized that recombination might enlarge the probability of neofunctionalization (P<sub>neo</sub>) of duplicate genes. In this article this hypothesis has been tested theoretically.</p> <p>Results</p> <p>Results show that through originalization recombination might not only shorten mean time to neofunctionalizaiton, but also enlarge P<sub>neo</sub>.</p> <p>Conclusions</p> <p>Therefore, recombination might facilitate neofunctionalization via originalization. Several extensive applications of these results on genomic evolution have been discussed: 1. Time to nonfunctionalization can be much longer than a few million generations expected before; 2. Homogenization on duplicated loci results from not only gene conversion, but also originalization; 3. Although the rate of advantageous mutation is much small compared with that of degenerative mutation, P<sub>neo </sub>cannot be expected to be small.</p

    Control of Transcription by Cell Size

    Get PDF
    Cell size increases significantly with increasing ploidy. Differences in cell size and ploidy are associated with alterations in gene expression, although no direct connection has been made between cell size and transcription. Here we show that ploidy-associated changes in gene expression reflect transcriptional adjustment to a larger cell size, implicating cellular geometry as a key parameter in gene regulation. Using RNA-seq, we identified genes whose expression was altered in a tetraploid as compared with the isogenic haploid. A significant fraction of these genes encode cell surface proteins, suggesting an effect of the enlarged cell size on the differential regulation of these genes. To test this hypothesis, we examined expression of these genes in haploid mutants that also produce enlarged size. Surprisingly, many genes differentially regulated in the tetraploid are identically regulated in the enlarged haploids, and the magnitude of change in gene expression correlates with the degree of size enlargement. These results indicate a causal relationship between cell size and transcription, with a size-sensing mechanism that alters transcription in response to size. The genes responding to cell size are enriched for those regulated by two mitogen-activated protein kinase pathways, and components in those pathways were found to mediate size-dependent gene regulation. Transcriptional adjustment to enlarged cell size could underlie other cellular changes associated with polyploidy. The causal relationship between cell size and transcription suggests that cell size homeostasis serves a regulatory role in transcriptome maintenance.National Institutes of Health (U.S.) (grant GM035010)National Institutes of Health (U.S.) (grant GM040266

    Brans-Dicke corrections to the gravitational Sagnac effect

    Full text link
    The {\it exact} formulation for the effect of the Brans-Dicke scalar field on the gravitational corrections to the Sagnac delay in the Jordan and Einstein frames is presented for the first time. The results completely agree with the known PPN factors in the weak field region. The calculations also reveal how the Brans-Dicke coupling parameter (appears in various correction terms for different types of source/observer orbits. A first order correction of roughly 2.83 x 10^{-1} fringe shift for visible light is introduced by the gravity-scalar field combination for Earth bound equatorial orbits. It is also demonstrated that the final predictions in the two frames do not differ. The effect of the scalar field on the geodetic and Lense-Thirring precession of a spherical gyroscope in circular polar orbit around the Earth is also computed with an eye towards the Stanford Gravity Probe-B experiment currently in progress. The feasibility of optical and matter-wave interferometric measurements is discussed briefly.Comment: 35 pages, 2 figures, pdf (from MSWord), accepted Physical Review D, January 2001. (revised from June 25, 2000 version

    Expression of Human nPTB Is Limited by Extreme Suboptimal Codon Content

    Get PDF
    Background: The frequency of synonymous codon usage varies widely between organisms. Suboptimal codon content limits expression of viral, experimental or therapeutic heterologous proteins due to limiting cognate tRNAs. Codon content is therefore often adjusted to match codon bias of the host organism. Codon content also varies between genes within individual mammalian species. However, little attention has been paid to the consequences of codon content upon translation of host proteins. Methodology/Principal Findings: In comparing the splicing repressor activities of transfected human PTB and its two tissue-restricted paralogs–nPTB and ROD1–we found that the three proteins were expressed at widely varying levels. nPTB was expressed at 1–3 % the level of PTB despite similar levels of mRNA expression and 74 % amino acid identity. The low nPTB expression was due to the high proportion of codons with A or U at the third codon position, which are suboptimal in human mRNAs. Optimization of the nPTB codon content, akin to the ‘‘humanization’ ’ of foreign ORFs, allowed efficient translation in vivo and in vitro to levels comparable with PTB. We were then able to demonstrate that all three proteins act as splicing repressors. Conclusions/Significance: Our results provide a striking illustration of the importance of mRNA codon content in determining levels of protein expression, even within cells of the natural host species

    Trajectories of Delinquency and Parenting Styles

    Get PDF
    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering ages 10–19, we identified five distinct delinquency trajectories differing in both level and change in seriousness over time: a nondelinquent, minor persisting, moderate desisting, serious persisting, and serious desisting trajectory. More serious delinquents tended to more frequently engage in delinquency, and to report a higher proportion of theft. Proportionally, serious persistent delinquents were the most violent of all trajectory groups. Using cluster analysis we identified three parenting styles: authoritative, authoritarian (moderately supportive), and neglectful (punishing). Controlling for demographic characteristics and childhood delinquency, neglectful parenting was more frequent in moderate desisters, serious persisters, and serious desisters, suggesting that parenting styles differentiate non- or minor delinquents from more serious delinquents

    Transcription and Chromatin Organization of a Housekeeping Gene Cluster Containing an Integrated β-Globin Locus Control Region

    Get PDF
    The activity of locus control regions (LCR) has been correlated with chromatin decondensation, spreading of active chromatin marks, locus repositioning away from its chromosome territory (CT), increased association with transcription factories, and long-range interactions via chromatin looping. To investigate the relative importance of these events in the regulation of gene expression, we targeted the human β-globin LCR in two opposite orientations to a gene-dense region in the mouse genome containing mostly housekeeping genes. We found that each oppositely oriented LCR influenced gene expression on both sides of the integration site and over a maximum distance of 150 kilobases. A subset of genes was transcriptionally enhanced, some of which in an LCR orientation-dependent manner. The locus resides mostly at the edge of its CT and integration of the LCR in either orientation caused a more frequent positioning of the locus away from its CT. Locus association with transcription factories increased moderately, both for loci at the edge and outside of the CT. These results show that nuclear repositioning is not sufficient to increase transcription of any given gene in this region. We identified long-range interactions between the LCR and two upregulated genes and propose that LCR-gene contacts via chromatin looping determine which genes are transcriptionally enhanced
    • …
    corecore