606 research outputs found

    Development of nonflammable coating for polycarbonate Final report

    Get PDF
    Sodium and potassium silicates applied to polycarbonates to provide nonflammable coating

    Optical Sky Brightness at Cerro Tololo Inter-American Observatory from 1992 to 2006

    Full text link
    We present optical UBVRI sky brightness measures from 1992 through 2006. The data are based on CCD imagery obtained with the CTIO 0.9-m, 1.3-m, and 1.5-m telescopes. The B- and V-band data are in reasonable agreement with measurements previously made at Mauna Kea, though on the basis of a small number of images per year there are discrepancies for the years 1992 through 1994. Our CCD-based data are not significantly different than values obtained at Cerro Paranal. We find that the yearly averages of V-band sky brightness are best correlated with the 10.7-cm solar flux taken 5 days prior to the sky brightness measures. This implies an average speed of 350 km/sec for the solar wind. While we can measure an enhancement of the night sky levels over La Serena 10 degrees above the horizon, at elevation angles above 45 degrees we find no evidence that the night sky brightness at Cerro Tololo is affected by artificial light of nearby towns and cities.Comment: 24 pages, 5 figures, to be published in the June, 2007, issue of the Publications of the Astron. Society of the Pacifi

    Discovery of the Putative Pulsar and Wind Nebula Associated with the TeV Gamma-ray Source HESS J1813-178

    Full text link
    We present a Chandra X-ray observation of G12.82-0.02, a shell-like radio supernova remnant coincident with the TeV gamma-ray source HESS J1813-178. We resolve the X-ray emission from the co-located ASCA source into a point source surrounded by structured diffuse emission that fills the interior of the radio shell. The morphology of the diffuse emission strongly resembles that of a pulsar wind nebula. The spectrum of the compact source is well-characterized by a power-law with index Gamma approx 1.3, typical of young and energetic rotation-powered pulsars. For a distance of 4.5 kpc, consistent with the X-ray absorption and an association with the nearby star formation region W33, the 2-10 keV X-ray luminosities of the putative pulsar and nebula are L(PSR) = 3.2E33 ergs/s and L(PWN) = 1.4E34 ergs/s, respectively. Both the flux ratio of L(PWN)/L(PSR) = 4.3 and the total luminosity of this system predict a pulsar spin-down power of Edot > 1E37 ergs/s, placing it within the ten most energetic young pulsars in the Galaxy. A deep search for radio pulsations using the Parkes telescope sets an upper-limit of approx 0.07 mJy at 1.4 GHz for periods >~ 50 ms. We discuss the energetics of this source, and consider briefly the proximity of bright H2 regions to this and several other HESS sources, which may produce their TeV emission via inverse Compton scattering.Comment: 7 pages, 6 figure, Latex, emulateapj style. To appear in the Astrophysical Journa

    High-redshift Cool-core Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect in the South Pole Telescope Survey

    Get PDF
    We report the first investigation of cool-core properties of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect. We use 13 galaxy clusters uniformly selected from 178 deg2 observed with the South Pole Telescope (SPT) and followed up by the Chandra X-ray Observatory. They form an approximately mass-limited sample (>3 × 10^(14) M_☉ h^(–1)_(70)) spanning redshifts 0.3 0.5 cool-core clusters, including two strong cool cores. This rules out the hypothesis that there are no z > 0.5 clusters that qualify as strong cool cores at the 5.4σ level. The fraction of strong cool-core clusters in the SPT sample in this redshift regime is between 7% and 56% (95% confidence). Although the SPT selection function is significantly different from the X-ray samples, the high-z c_(SB) distribution for the SPT sample is statistically consistent with that of X-ray-selected samples at both low and high redshifts. The cool-core strength is inversely correlated with the offset between the brightest cluster galaxy and the X-ray centroid, providing evidence that the dynamical state affects the cool-core strength of the cluster. Larger SZ-selected samples will be crucial in understanding the evolution of cluster cool cores over cosmic time

    EVALUATION OF LOW-COST DEPTH SENSORS FOR OUTDOOR APPLICATIONS

    Get PDF
    Depth information is a key component that allows a computer to reproduce human vision in plenty of applications from manufacturing, to robotics and autonomous driving. The Microsoft Kinect has brought depth sensing to another level resulting in a large number of low cost, small form factor depth sensors. Although these sensors can efficiently produce data over a wide dynamic range of sensing applications and within different environments, most of them are rather suitable for indoor applications. Operating in outdoor areas is a challenge because of undesired illumination, usually strong sunlight or surface scattering, which degrades measurement accuracy. Therefore, after presenting the different working principle of existing depth cameras, our study aims to evaluate where two very recent sensors, the AD-FXTOF1-EBZ and the flexx2, stand towards the issue of outdoor environment. In particular, measurement tests will be performed on different types of materials subjected to various illumination in order to evaluate the potential accuracy of such sensors

    A GLIMPSE into the Nature of Galactic Mid-IR Excesses

    Full text link
    We investigate the nature of the mid-IR excess for 31 intermediate-mass stars that exhibit an 8 micron excess in either the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire or the Mid-Course Space Experiment using high resolution optical spectra to identify stars surrounded by warm circumstellar dust. From these data we determine projected stellar rotational velocities and estimate stellar effective temperatures for the sample. We estimate stellar ages from these temperatures, parallactic distances, and evolutionary models. Using MIPS [24] measurements and stellar parameters we determine the nature of the infrared excess for 19 GLIMPSE stars. We find that 15 stars exhibit Halpha emission and four exhibit Halpha absorption. Assuming that the mid-IR excesses arise in circumstellar disks, we use the Halpha fluxes to model and estimate the relative contributions of dust and free-free emission. Six stars exhibit Halpha fluxes that imply free-free emission can plausibly explain the infrared excess at [24]. These stars are candidate classical Be stars. Nine stars exhibit Halpha emission, but their Halpha fluxes are insufficient to explain the infrared excesses at [24], suggesting the presence of a circumstellar dust component. After the removal of the free-free component in these sources, we determine probable disk dust temperatures of Tdisk~300-800 K and fractional infrared luminosities of L(IR)/L(*)~10^-3. These nine stars may be pre-main-sequence stars with transitional disks undergoing disk clearing. Three of the four sources showing Halpha absorption exhibit circumstellar disk temperatures ~300-400 K, L(IR)/L(*)~10^-3, IR colors K-[24]< 3.3, and are warm debris disk candidates. One of the four Halpha absorption sources has K-[24]> 3.3 implying an optically thick outer disk and is a transition disk candidate.Comment: 17 figures. Accepted for publication in Ap

    The Blanco Cosmology Survey: Data Acquisition, Processing, Calibration, Quality Diagnostics and Data Release

    Full text link
    The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of \sim80 deg2^2 of the southern sky located in two fields: (α\alpha,δ\delta)= (5 hr, 55-55^{\circ}) and (23 hr, 55-55^{\circ}). The survey was carried out between 2005 and 2008 in grizgriz bands with the Mosaic2 imager on the Blanco 4m telescope. The primary aim of the BCS survey is to provide the data required to optically confirm and measure photometric redshifts for Sunyaev-Zel'dovich effect selected galaxy clusters from the South Pole Telescope and the Atacama Cosmology Telescope. We process and calibrate the BCS data, carrying out PSF corrected model fitting photometry for all detected objects. The median 10σ\sigma galaxy (point source) depths over the survey in grizgriz are approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6) and 21.3 (22.1), respectively. The astrometric accuracy relative to the USNO-B survey is 45\sim45 milli-arcsec. We calibrate our absolute photometry using the stellar locus in grizJgrizJ bands, and thus our absolute photometric scale derives from 2MASS which has 2\sim2% accuracy. The scatter of stars about the stellar locus indicates a systematics floor in the relative stellar photometric scatter in grizgriz that is \sim1.9%, \sim2.2%, \sim2.7% and\sim2.7%, respectively. A simple cut in the AstrOmatic star-galaxy classifier {\tt spread\_model} produces a star sample with good spatial uniformity. We use the resulting photometric catalogs to calibrate photometric redshifts for the survey and demonstrate scatter δz/(1+z)=0.054\delta z/(1+z)=0.054 with an outlier fraction η<5\eta<5% to z1z\sim1. We highlight some selected science results to date and provide a full description of the released data products.Comment: 23 pages, 23 figures . Response to referee comments. Paper accepted for publication. BCS catalogs and images available for download from http://www.usm.uni-muenchen.de/BC
    corecore