33 research outputs found

    Elucidating Prostate Cancer Behaviour During Treatment via Low-pass Whole-genome Sequencing of Circulating Tumour DNA

    Get PDF
    Cabazitaxel; Cell-free DNA; Tumour fractionCabazitaxel; ADN lliure de cèl·lules; Fracció tumoralCabazitaxel; ADN libre de células; Fracción tumoralBackground Better blood tests to elucidate the behaviour of metastatic castration-resistant prostate cancer (mCRPC) are urgently needed to drive therapeutic decisions. Plasma cell-free DNA (cfDNA) comprises normal and circulating tumour DNA (ctDNA). Low-pass whole-genome sequencing (lpWGS) of ctDNA can provide information on mCRPC behaviour. Objective To validate and clinically qualify plasma lpWGS for mCRPC. Design, setting, and participants Plasma lpWGS data were obtained for mCRPC patients consenting to optional substudies of two prospective phase 3 trials (FIRSTANA and PROSELICA). In FIRSTANA, chemotherapy-naïve patients were randomised to treatment with docetaxel (75 mg/m2) or cabazitaxel (20 or 25 mg/m2). In PROSELICA, patients previously treated with docetaxel were randomised to 20 or 25 mg/m2 cabazitaxel. lpWGS data were generated from 540 samples from 188 mCRPC patients acquired at four different time points (screening, cycle 1, cycle 4, and end of study). Outcome measurements and statistical analysis lpWGS data for ctDNA were evaluated for prognostic, response, and tumour genomic measures. Associations with response and survival data were determined for tumour fraction. Genomic biomarkers including large-scale transition (LST) scores were explored in the context of prior treatments. Results and limitations Plasma tumour fraction was prognostic for overall survival in univariable and stratified multivariable analyses (hazard ratio 1.75, 95% confidence interval 1.08–2.85; p = 0.024) and offered added value compared to existing biomarkers (C index 0.722 vs 0.709; p = 0.021). Longitudinal changes were associated with drug response. PROSELICA samples were enriched for LSTs (p = 0.029) indicating genomic instability, and this enrichment was associated with prior abiraterone and enzalutamide treatment but not taxane or radiation therapy. Higher LSTs were correlated with losses of RB1/RNASEH2B, independent of BRCA2 loss. Conclusions Plasma lpWGS of ctDNA describes CRPC behaviour, providing prognostic and response data of clinical relevance. The added prognostic value of the ctDNA fraction over established biomarkers should be studied further.This work was supported by Prostate Cancer UK and the Movember Foundation through the London Movember Centre of Excellence (CEO13-2-002), Cancer Research UK (Centre Programme grant), Experimental Cancer Medicine Centre grant funding from Cancer Research UK and the Department of Health, and Biomedical Research Centre funding to the Royal Marsden ECMC (CRM064X). George Seed was funded by a Prostate Cancer UK PhD Studentship (grant ref. TLD-S15-006, 2016–2020) and a Prostate Cancer UK research fellowship (grant ref. TLD-PF19-005, from 2021). Semini Sumanasuriya was funded by a Prostate Cancer UK grant (ref. RIA1 5-ST2-O18). The authors are grateful for support and funding from Sanofi Aventis. The sponsor played a role in collection of the data and review and approval of the manuscript

    Clinical Utility of Circulating Tumour Cell Androgen Receptor Splice Variant-7 Status in Metastatic Castration-resistant Prostate Cancer.

    Get PDF
    Abstract Background Detection of androgen receptor splice variant-7 (AR-V7) mRNA in circulating tumour cells (CTCs) is associated with worse outcome in metastatic castration-resistant prostate cancer (mCRPC). However, studies rarely report comparisons with CTC counts and biopsy AR-V7 protein expression. Objective To determine the reproducibility of AdnaTest CTC AR-V7 testing, and associations with clinical characteristics, CellSearch CTC counts, tumour biopsy AR-V7 protein expression and overall survival (OS). Design, setting, and participants CTC AR-V7 status was determined for 227 peripheral blood samples, from 181 mCRPC patients with CTC counts (202 samples; 136 patients) and matched mCRPC biopsies (65 samples; 58 patients). Outcome measurements and statistical analysis CTC AR-V7 status was associated with clinical characteristics, CTC counts, and tissue biopsy AR-V7 protein expression. The association of CTC AR-V7 status and other baseline variables with OS was determined. Results and limitations Of the samples, 35% were CTC+/AR-V7+. CTC+/AR-V7+ samples had higher CellSearch CTC counts (median CTC; interquartile range [IQR]: 60, 19–184 vs 9, 2–64; Mann-Whitney test p Conclusions Studies reporting the prognostic relevance of CTC AR-V7 status must account for CTC counts. Discordant CTC AR-V7 results and AR-V7 protein expression in matched, same-patient biopsies are reported. Patient summary Liquid biopsies that determine circulating tumour cell androgen receptor splice variant-7 status have the potential to impact treatment decisions in metastatic castration-resistant prostate cancer patients. Robust clinical qualification of these assays is required before their routine use

    Cell-free DNA profiling of metastatic prostate cancer reveals microsatellite instability, structural rearrangements and clonal hematopoiesis.

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.BACKGROUND: There are multiple existing and emerging therapeutic avenues for metastatic prostate cancer, with a common denominator, which is the need for predictive biomarkers. Circulating tumor DNA (ctDNA) has the potential to cost-efficiently accelerate precision medicine trials to improve clinical efficacy and diminish costs and toxicity. However, comprehensive ctDNA profiling in metastatic prostate cancer to date has been limited. METHODS: A combination of targeted and low-pass whole genome sequencing was performed on plasma cell-free DNA and matched white blood cell germline DNA in 364 blood samples from 217 metastatic prostate cancer patients. RESULTS: ctDNA was detected in 85.9% of baseline samples, correlated to line of therapy and was mirrored by circulating tumor cell enumeration of synchronous blood samples. Comprehensive profiling of the androgen receptor (AR) revealed a continuous increase in the fraction of patients with intra-AR structural variation, from 15.4% during first-line metastatic castration-resistant prostate cancer therapy to 45.2% in fourth line, indicating a continuous evolution of AR during the course of the disease. Patients displayed frequent alterations in DNA repair deficiency genes (18.0%). Additionally, the microsatellite instability phenotype was identified in 3.81% of eligible samples (≥ 0.1 ctDNA fraction). Sequencing of non-repetitive intronic and exonic regions of PTEN, RB1, and TP53 detected biallelic inactivation in 47.5%, 20.3%, and 44.1% of samples with ≥ 0.2 ctDNA fraction, respectively. Only one patient carried a clonal high-impact variant without a detectable second hit. Intronic high-impact structural variation was twice as common as exonic mutations in PTEN and RB1. Finally, 14.6% of patients presented false positive variants due to clonal hematopoiesis, commonly ignored in commercially available assays. CONCLUSIONS: ctDNA profiles appear to mirror the genomic landscape of metastatic prostate cancer tissue and may cost-efficiently provide somatic information in clinical trials designed to identify predictive biomarkers. However, intronic sequencing of the interrogated tumor suppressors challenges the ubiquitous focus on coding regions and is vital, together with profiling of synchronous white blood cells, to minimize erroneous assignments which in turn may confound results and impede true associations in clinical trials.The Belgian Foundation Against Cancer (grant number C/2014/227); Kom op tegen Kanker (Stand up to Cancer), the Flemish Cancer Society (grant number 00000000116000000206); Royal College of Surgeons/Cancer Research UK (C19198/A1533); The Cancer Research Funds of Radiumhemmet, through the PCM program at KI (grant number 163012); The Erling-Persson family foundation (grant number 4-2689-2016); the Swedish Research Council (grant number K2010-70X-20430-04-3), and the Swedish Cancer Foundation (grant number 09-0677)

    Hypoxia and Noncoding RNAs in Taxane Resistance

    No full text
    Taxanes are chemotherapeutic drugs employed in the clinic to treat a variety of malignancies. Despite their overall efficacy, cancer cells often display resistance to taxanes. Therefore, new strategies to increase the effectiveness of taxane-based chemotherapeutics are urgently needed. Multiple molecular players are linked to taxane resistance; these include efflux pumps, DNA repair mechanisms, and hypoxia-related pathways. In addition, emerging evidence indicates that both non-coding RNAs and epigenetic effectors might also be implicated in taxane resistance. Here we focus on the causes of taxane resistance, with the aim to envisage an integrated model of the ‘taxane resistance phenome’. This model could help the development of novel therapeutic strategies to treat taxane-resistant neoplasms

    Consensus Statement on Circulating Biomarkers for Advanced Prostate Cancer

    Get PDF
    CONTEXT: In advanced prostate cancer (PC), there is increasing investigation of circulating biomarkers, including quantitation and characterization of circulating tumour cells and cell-free nucleic acids, for therapeutic monitoring and as prognostic and predictive biomarkers. However, there is a lack of consensus and standardisation regarding analyses, reporting, and integration of results into specific clinical contexts. A consensus meeting on circulating biomarkers was held to address these topics. OBJECTIVE: To present a report of the consensus statement on circulating biomarkers in advanced PC. EVIDENCE ACQUISITION: Four important areas of controversy in the field of circulating biomarkers in PC management were identified: known clinical utility of circulating biomarkers; unmet clinical needs for circulating biomarkers in PC care; most pressing blood-based molecular assays required; and essential steps for developing circulating biomarker assays. A panel of 18 international PC experts in the field of circulating biomarkers developed the programme and consensus questions. The panel voted publicly but anonymously on 50 predefined questions developed following a modified Delphi process. EVIDENCE SYNTHESIS: Voting was based solely on panellist opinions of the predefined topics and therefore not on a standard literature review or meta-analysis. The outcomes of the voting had varying degrees of support, as reflected in the wording of this article and in the detailed voting results provided in the Supplementary material. CONCLUSIONS: The expert voting results presented can guide the future development of circulating biomarkers for PC care. Notably, the consensus meeting highlighted the importance of reproducibility and variability studies, among other significant areas in need of trials specifically designed to address them. PATIENT SUMMARY: A panel of international experts met to discuss and vote on the use of different blood-based prostate cancer tests, and how they can be used to guide treatment and disease monitoring to deliver more precise and better patient care

    A streamlined workflow for single-cells genome-wide copy-number profiling by low-pass sequencing of LM-PCR whole-genome amplification products

    Get PDF
    <div><p>Chromosomal instability and associated chromosomal aberrations are hallmarks of cancer and play a critical role in disease progression and development of resistance to drugs. Single-cell genome analysis has gained interest in latest years as a source of biomarkers for targeted-therapy selection and drug resistance, and several methods have been developed to amplify the genomic DNA and to produce libraries suitable for Whole Genome Sequencing (WGS). However, most protocols require several enzymatic and cleanup steps, thus increasing the complexity and length of protocols, while robustness and speed are key factors for clinical applications. To tackle this issue, we developed a single-tube, single-step, streamlined protocol, exploiting ligation mediated PCR (LM-PCR) Whole Genome Amplification (WGA) method, for low-pass genome sequencing with the Ion Torrent<sup>â„¢</sup> platform and copy number alterations (CNAs) calling from single cells. The method was evaluated on single cells isolated from 6 aberrant cell lines of the NCI-H series. In addition, to demonstrate the feasibility of the workflow on clinical samples, we analyzed single circulating tumor cells (CTCs) and white blood cells (WBCs) isolated from the blood of patients affected by prostate cancer or lung adenocarcinoma. The results obtained show that the developed workflow generates data accurately representing whole genome absolute copy number profiles of single cell and allows alterations calling at resolutions down to 100 Kbp with as few as 200,000 reads. The presented data demonstrate the feasibility of the <i>Ampli</i>1<sup>â„¢</sup> WGA-based low-pass workflow for detection of CNAs in single tumor cells which would be of particular interest for genome-driven targeted therapy selection and for monitoring of disease progression.</p></div
    corecore