206 research outputs found

    Mutational analysis of DAX1 in patients with hypogonadotropic hypogonadism or pubertal delay

    Get PDF
    Although delayed puberty is relatively common and often familial, its molecular and pathophysiologic basis is poorly understood. In contrast, the molecular mechanisms underlying some forms of hypogonadotropic hypogonadism (HH) are clearer, following the description of mutations in the genes KAL, GNRHR, and PROP1. Mutations in another gene, DAX1 (AHC), cause X-linked adrenal hypoplasia congenita and HH. Affected boys usually present with primary adrenal failure in infancy or childhood and HH at the expected time of puberty.DAX1 mutations have also been reported to occur with a wider spectrum of clinical presentations. These cases include female carriers of DAX1 mutations with marked pubertal delay and a male with incomplete BH and mild adrenal insufficiency in adulthood. Given this emerging phenotypic spectrum of clinical presentation in men and women with DAX1 mutations, we hypothesized that DAX1 might be a candidate gene for mutation in patients with idiopathic sporadic or familial HH or constitutional delay of puberty. Direct sequencing of DAX1 was performed in 106 patients, including 85 (80 men and 5 women) with sporadic HH or constitutional delay of puberty and patients from 21 kindreds with familial forms of these disorders. No DAX1 mutations were found in these groups of patients, although silent single nucleotide polymorphisms were identified (T114C, G498A). This study suggests that mutations in DAX1 are unlikely to be a common cause of HH or pubertal delay in the absence of a concomitant history of adrenal insufficiency

    X-linked adrenal hypoplasia congenita: A mutation in DAX1 expands the phenotypic spectrum in males and females

    Get PDF
    X-linked adrenal hypoplasia congenita (AHC) is a disorder associated with primary adrenal insufficiency and hypogonadotropic hypogonadism (HH). The gene responsible for X-linked AHC, DAX1, encodes a member of the nuclear hormone receptor superfamily. We studied an extended kindred with AHC and HH in which two males (the proband and his nephew) were affected with a nucleotide deletion (501delA). The proband's mother, sister, and niece were heterozygous for this frameshift mutation. At age 27 yr, after 7 yr of low dose hCG therapy, the proband underwent a testicular biopsy revealing rare spermatogonia and Leydig cell hyperplasia. Despite steadily progressive doses of hCG and Pergonal administered over a 3-yr period, the proband remained azoospermic. The proband's mother, sister (obligate carrier), and niece all had a history of delayed puberty, with menarche occurring at ages 17-18 yr.Baseline patterns of pulsatile gonadotropin secretion and gonad otropin responsiveness to exogenous pulsatile GnRH were examined in the affected males. LH, FSK, and free alpha-subunit were determined during 12.5-24 h of frequent blood sampling (every 10 min). Both patients then received pulsatile GnRH (25 ng/kg) sc every 2 h for 6-7 days. Gonadotropin responses to a single GnRH pulse iv were monitored daily to assess the pituitary responsiveness to exogenous GnRH. In the proband, FSH and LH levels demonstrated a subtle, but significant, response to GnRH over the week of pulsatile GnRH therapy. Free alpha-subunit levels demonstrated an erratic pattern of secretion at baseline and no significant response to pulsatile GnRH.We conclude that 1) affected males with AHC/HH may have an intrinsic defect in spermatogenesis that is not responsive to gonadotropin therapy; 2) female carriers of DAX1 mutations may express the phenotype of delayed puberty; and 3) although affected individuals display minimal responses to pulsatile GnRH, as observed in other AHC kindreds, subtle differences in gonadotropin patterns may nevertheless exist between affected individuals within a kindred

    Tachykinin signaling is required for the induction of the preovulatory LH surge and normal LH pulses.

    Get PDF
    Tachykinins (NKA, NKB and Substance P) are important components of the neuroendocrine control of reproduction by directly stimulating Kiss1 neurons to control GnRH pulsatility, essential for reproduction. Despite this role of tachykinins for successful reproduction, knockout mice for Tac1 (NKA/SP) and Tac2 (NKB) genes are fertile, resembling the phenotype of human patients bearing NKB signaling mutations, who often reverse their hypogonadal phenotype. This suggests the existence of compensatory mechanisms among the different tachykinin ligand-receptor systems, to maintain reproduction in the absence of one of them. In order to test this hypothesis, we generated complete tachykinin deficient mice (Tac1/Tac2KO). Male mice displayed delayed puberty onset and decreased LH pulsatility (frequency and amplitude of LH pulses) but preserved fertility. However, females did not show signs of puberty onset (first estrus) within 45 days after vaginal opening, displayed low frequency (but normal amplitude) of LH pulses and 80% of them remained infertile. Further evaluation identified a complete absence of the preovulatory LH surge in Tac1/Tac2KO females as well as in WT females treated with NKB or SP receptor antagonists. These data confirmed a fundamental role for tachykinins in the timing of puberty onset and LH pulsatility and uncovered a role of tachykinin signaling in the facilitation of the preovulatory LH surge. Overall, these findings indicate that tachykinin signaling plays a dominant role in the control of ovulation, with potential implications as pathogenic mechanism and therapeutic target to improve reproductive outcomes in women with ovulation impairments

    A fatal case of recurrent amiodarone-induced thyrotoxicosis after percutaneous tracheotomy: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amiodarone is a widely used antiarrythmic drug, which may produce secondary effects on the thyroid. In 14–18% of amiodarone-treated patients, there is overt thyroid dysfunction, usually in the form of amiodarone-induced thyrotoxicosis, which can be difficult to manage with standard medical treatment.</p> <p>Case presentation</p> <p>Presented is the case of a 65-year-old man, under chronic treatment of atrial fibrillation with amiodarone, who was admitted to the Intensive Care Unit with acute cardio-respiratory failure and fever. He was recently hospitalized with respiratory distress, attributed to amiodarone-induced pulmonary fibrosis. Clinical and laboratory investigation revealed thyrotoxicosis due to amiodarone treatment. He was begun on thionamide, prednisone and beta-blockers. After a short term improvement of his clinical status the patient underwent percutaneous tracheotomy due to weaning failure from mechanical ventilation, which led to the development of recurrent thyrotoxicosis, unresponsive to medical treatment. Finally, the patient developed multiple organ failure and died, seven days later.</p> <p>Conclusion</p> <p>We suggest that percutaneous tracheotomy could precipitate a thyrotoxic crisis, particularly in non-euthyroid patients suffering from concurrent severe illness and should be performed only in parallel with emergency thyroid surgery, when indicated.</p

    Prevalence of deleterious variants in MC3R in patients with constitutional delay of growth and puberty.

    Get PDF
    CONTEXT: The melanocortin 3 receptor (MC3R) has recently emerged as a critical regulator of pubertal timing, linear growth and the acquisition of lean mass in humans and mice. In population-based studies, heterozygous carriers of deleterious variants in MC3R report a later onset of puberty than non-carriers. However, the frequency of such variants in patients who present with clinical disorders of pubertal development is currently unknown. OBJECTIVE: To determine whether deleterious MC3R variants are more frequently found in patients clinically presenting with constitutional delay of growth and puberty (CDGP) or normosmic idiopathic hypogonadotropic hypogonadism (nIHH). DESIGN, SETTING AND PARTICIPANTS: We examined the sequence of MC3R in 362 adolescents with a clinical diagnosis of CDGP and 657 patients with nIHH, experimentally characterised the signalling properties of all non-synonymous variants found and compared their frequency to that in 5774 controls from a population-based cohort. Additionally, we established the relative frequency of predicted deleterious variants in individuals with self-reported delayed vs normally timed menarche/voice breaking in the UK Biobank cohort. RESULTS: MC3R loss-of-function variants were infrequent but overrepresented in patients with CDGP (8/362 (2.2%), OR = 4.17, p = 0.001). There was no strong evidence of overrepresentation in patients with nIHH (4/657 (0.6%), OR = 1.15, p = 0.779). In 246,328 women from UK Biobank, predicted deleterious variants were more frequently found in those self-reporting delayed (β‰₯16 years) vs normal age at menarche (OR = 1.66, p = 3.90E-07). CONCLUSIONS: We have found evidence that functionally damaging variants in MC3R are overrepresented in individuals with CDGP but are not a common cause of this phenotype

    Animal models for aberrations of gonadotropin action

    Get PDF
    During the last two decades a large number of genetically modified mouse lines with altered gonadotropin action have been generated. These mouse lines fall into three categories: the lack-of-function mice, gain-of-function mice, and the mice generated by breeding the abovementioned lines with other disease model lines. The mouse strains lacking gonadotropin action have elucidated the necessity of the pituitary hormones in pubertal development and function of gonads, and revealed the processes from the original genetic defect to the pathological phenotype such as hypo- or hypergonadotropic hypogonadism. Conversely, the strains of the second group depict consequences of chronic gonadotropin action. The lines vary from those expressing constitutively active receptors and those secreting follicle-stimulating hormone (FSH) with slowly increasing amounts to those producing human choriogonadotropin (hCG), amount of which corresponds to 2000-fold luteinizing hormone (LH)/hCG biological activity. Accordingly, the phenotypes diverge from mild anomalies and enhanced fertility to disrupted gametogenesis, but eventually chronic, enhanced and non-pulsatile action of both FSH and LH leads to female and male infertility and/or hyper- and neoplasias in most of the gonadotropin gain-of-function mice. Elevated gonadotropin levels also alter the function of several extra-gonadal tissues either directly or indirectly via increased sex steroid production. These effects include promotion of tumorigenesis in tissues such as the pituitary, mammary and adrenal glands. Finally, the crossbreedings of the current mouse strains with other disease models are likely to uncover the contribution of gonadotropins in novel biological systems, as exemplified by the recent crossbreed of LHCG receptor deficient mice with Alzheimer disease mice

    Mutation Analysis of NR5A1 Encoding Steroidogenic Factor 1 in 77 Patients with 46, XY Disorders of Sex Development (DSD) Including Hypospadias

    Get PDF
    BACKGROUND: Mutations of the NR5A1 gene encoding steroidogenic factor-1 have been reported in association with a wide spectrum of 46,XY DSD (Disorder of Sex Development) phenotypes including severe forms of hypospadias. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the frequency of NR5A1 gene mutations in a large series of patients presenting with 46,XY DSD and hypospadias. Based on their clinical presentation 77 patients were classified either as complete or partial gonadal dysgenesis (uterus seen at genitography and/or surgery, nβ€Š=β€Š11), ambiguous external genitalia without uterus (nβ€Š=β€Š33) or hypospadias (nβ€Š=β€Š33). We identified heterozygous NR5A1 mutations in 4 cases of ambiguous external genitalia without uterus (12.1%; p.Trp279Arg, pArg39Pro, c.390delG, c140_141insCACG) and a de novo missense mutation in one case with distal hypospadias (3%; p.Arg313Cys). Mutant proteins showed reduced transactivation activity and mutants p.Arg39Pro and p.Arg313Cys did not synergize with the GATA4 cofactor to stimulate reporter gene activity, although they retained their ability to physically interact with the GATA4 protein. CONCLUSIONS/SIGNIFICANCE: Mutations in NR5A1 were observed in 5/77 (6.5%) cases of 46,XY DSD including hypospadias. Excluding the cases of 46,XY gonadal dysgenesis the incidence of NR5A1 mutations was 5/66 (7.6%). An individual with isolated distal hypopadias carried a de novo heterozygous missense mutation, thus extending the range of phenotypes associated with NR5A1 mutations and suggesting that this group of patients should be screened for NR5A1 mutations

    DLK1 Is a Somato-Dendritic Protein Expressed in Hypothalamic Arginine-Vasopressin and Oxytocin Neurons

    Get PDF
    Delta-Like 1 Homolog, Dlk1, is a paternally imprinted gene encoding a transmembrane protein involved in the differentiation of several cell types. After birth, Dlk1 expression decreases substantially in all tissues except endocrine glands. Dlk1 deletion in mice results in pre-natal and post-natal growth deficiency, mild obesity, facial abnormalities, and abnormal skeletal development, suggesting involvement of Dlk1 in perinatal survival, normal growth and homeostasis of fat deposition. A neuroendocrine function has also been suggested for DLK1 but never characterised. To evaluate the neuroendocrine function of DLK1, we first characterised Dlk1 expression in mouse hypothalamus and then studied post-natal variations of the hypothalamic expression. Western Blot analysis of adult mouse hypothalamus protein extracts showed that Dlk1 was expressed almost exclusively as a soluble protein produced by cleavage of the extracellular domain. Immunohistochemistry showed neuronal DLK1 expression in the suprachiasmatic (SCN), supraoptic (SON), paraventricular (PVN), arcuate (ARC), dorsomedial (DMN) and lateral hypothalamic (LH) nuclei. DLK1 was expressed in the dendrites and perikarya of arginine-vasopressin neurons in PVN, SCN and SON and in oxytocin neurons in PVN and SON. These findings suggest a role for DLK1 in the post-natal development of hypothalamic functions, most notably those regulated by the arginine-vasopressin and oxytocin systems

    A Dominant X-Linked QTL Regulating Pubertal Timing in Mice Found by Whole Genome Scanning and Modified Interval-Specific Congenic Strain Analysis

    Get PDF
    BACKGROUND: Pubertal timing in mammals is triggered by reactivation of the hypothalamic-pituitary-gonadal (HPG) axis and modulated by both genetic and environmental factors. Strain-dependent differences in vaginal opening among inbred mouse strains suggest that genetic background contribute significantly to the puberty timing, although the exact mechanism remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: We performed a genome-wide scanning for linkage in reciprocal crosses between two strains, C3H/HeJ (C3H) and C57BL6/J (B6), which differed significantly in the pubertal timing. Vaginal opening (VO) was used to characterize pubertal timing in female mice, and the age at VO of all female mice (two parental strains, F1 and F2 progeny) was recorded. A genome-wide search was performed in 260 phenotypically extreme F2 mice out of 464 female progeny of the F1 intercrosses to identify quantitative trait loci (QTLs) controlling this trait. A QTL significantly associated was mapped to the DXMit166 marker (15.5 cM, LOD = 3.86, p<0.01) in the reciprocal cross population (C3HB6F2). This QTL contributed 2.1 days to the timing of VO, which accounted for 32.31% of the difference between the original strains. Further study showed that the QTL was B6-dominant and explained 10.5% of variation to this trait with a power of 99.4% at an alpha level of 0.05.The location of the significant ChrX QTL found by genome scanning was then fine-mapped to a region of approximately 2.5 cM between marker DXMit68 and rs29053133 by generating and phenotyping a panel of 10 modified interval-specific congenic strains (mISCSs). CONCLUSIONS/SIGNIFICANCE: Such findings in our study lay a foundation for positional cloning of genes regulating the timing of puberty, and also reveal the fact that chromosome X (the sex chromosome) does carry gene(s) which take part in the regulative pathway of the pubertal timing in mice
    • …
    corecore