322 research outputs found
Nucleon contribution to the induced charge of neutrinos in a matter background and a magnetic field
We study the nucleon contribution to the electromagnetic vertex function of
neutrinos that propagate in a matter background in the presence of a magnetic
field. Starting from the one-loop expression for the corresponding terms of the
vertex function, and taking into account the anomalous magnetic coupling of the
nucleons, we calculate the B-dependent part of the form factors that determine
the induced charge of the neutrino. A formula for the neutrino induced charge
is obtained, and it is evaluated for various illustrative situations. The terms
due to the nucleons can be important in some cases, depending on the physical
conditions of the environment.Comment: revtex4, 13 pages. Contains the minor revisions made in the prd
accepted versio
Electromagnetic effects of neutrinos in an electron gas
We study the electromagnetic properties of a system that consists of an
electron background and a neutrino gas that may be moving or at rest, as a
whole, relative to the background. The photon self-energy for this system is
characterized by the usual transverse and longitudinal polarization functions,
and two additional ones which are the focus of our calculations, that give rise
to birefringence and anisotropic effects in the photon dispersion relations.
Expressions for them are obtained, which depend on the neutrino number
densities and involve momentum integrals over the electron distribution
functions, and are valid for any value of the photon momentum and general
conditions of the electron gas. Those expressions are evaluated explicitly for
several special cases and approximations which are generally useful in
astrophysical and cosmological settings. Besides studying the photon dispersion
relations, we consider the macroscopic electrodynamic equations for this
system, which involve the standard dielectric and permeability constants plus
two additional ones related to the photon self-energy functions. As an
illustration, the equations are used to discuss the evolution of a magnetic
field perturbation in such a medium. This particular phenomena has also been
considered in a recent work by Semikoz and Sokoloff as a mechanism for the
generation of large-scale magnetic fields in the Early Universe as a
consequence of the neutrino-plasma interactions, and allows us to establish
contact with a specific application in a well defined context, with a broader
scope and from a very different point of view.Comment: Revtex 20 page
Neutrino Oscillations, Fluctuations and Solar Magneto-gravity Waves
This review has two parts. The first part summarizes the current
observational constraints on fluctuations in the solar medium deep within the
solar Radiative Zone, and shows how the KamLAND and SNO-salt data combine to
make the experimental determination of the neutrino oscillation parameters
largely insensitive to prior assumptions about the nature of these
oscillations. As part of a search for plausible sources of solar fluctuations
to which neutrinos could be sensitive, the second part of the talk summarizes a
preliminary analysis of the influence of magnetic fields on helioseismic waves.
Using simplifying assumptions which should apply to modes in the solar
radiative zone, we find a resonance between Alfven waves and helioseismic
g-modes which potentially modifies the solar density profile fairly
significantly over comparatively short distance scales, too narrow to be ruled
out by present-day analyses of p-wave helioseismic spectra.Comment: Plenary talk presented at AHEP 2003, Valencia, Spain, October 200
Radiative Neutrino Decay in Media
In this letter we introduce a new method to determine the radiative neutrino
decay rate in the presence of a medium. Our approach is based on the
generalisation of the optical theorem at finite temperature and density.
Differently from previous works on this subject, our method allows to account
for dispersive and dissipative electromagnetic properties of the medium. Some
inconsistencies that are present in the literature are pointed-out and
corrected here. We shortly discuss the relevance of our results for neutrino
evolution in the early universe.Comment: 11 pages, 3 encapsulated figure
Neutrino magnetic moment in a magnetized plasma
The contribution of a magnetized plasma to the neutrino magnetic moment is
calculated. It is shown that only part of the additional neutrino energy in
magnetized plasma connecting with its spin and magnetic field strength defines
the neutrino magnetic moment. It is found that the presence of magnetized
plasma does not lead to the considerable increase of the neutrino magnetic
moment in contrast to the results presented in literature previously.Comment: 7 page, 1 figures, based on the talk presented by E.N.Narynskaya at
the XVI International Seminar Quarks'2010, Kolomna, Moscow Region, June 6-12,
2010, to appear in the Proceeding
Large mixing angle oscillations as a probe of the deep solar interior
We re-examine the sensitivity of solar neutrino oscillations to noise in the
solar interior using the best current estimates of neutrino properties. Our
results show that the measurement of neutrino properties at KamLAND provides
new information about fluctuations in the solar environment on scales to which
standard helioseismic constraints are largely insensitive. We also show how the
determination of neutrino oscillation parameters from a combined fit of KamLAND
and solar data depends strongly on the magnitude of solar density fluctuations.
We argue that a resonance between helioseismic and Alfven waves might provide a
physical mechanism for generating these fluctuations and, if so,
neutrino-oscillation measurements could be used to constrain the size of
magnetic fields deep within the solar radiative zone.Comment: 13 pages, LaTeX file using AASLaTeX, 6 figures included. Improved
version including the new KamLAND data. To appear in APJ letter
GZK Photons Above 10 EeV
We calculate the flux of "GZK-photons", namely the flux of photons produced
by extragalactic nucleons through the resonant photoproduction of pions, the so
called GZK effect. This flux depends on the UHECR spectrum on Earth, of the
spectrum of nucleons emitted at the sources, which we characterize by its slope
and maximum energy, on the distribution of sources and on the intervening
cosmological backgrounds, in particular the magnetic field and radio
backgrounds. For the first time we calculate the GZK photons produced by
nuclei. We calculate the possible range of the GZK photon fraction of the total
UHECR flux for the AGASA and the HiRes spectra. We find that for nucleons
produced at the sources it could be as large as a few % and as low as 10^{-4}
above 10 EeV. For nuclei produced at the sources the maximum photon fraction is
a factor of 2 to 3 times smaller above 10 EeV but the minimum could be much
smaller than for nucleons. We also comment on cosmogenic neutrino fluxes.Comment: 20 pages, 9 figures (21 panels), iopart.cls and iopart12.clo needed
to typese
Neutrino propagation in a random magnetic field
The active-sterile neutrino conversion probability is calculated for neutrino
propagating in a medium in the presence of random magnetic field fluctuations.
Necessary condition for the probability to be positive definite is obtained.
Using this necessary condition we put constraint on the neutrino magnetic
moment from active-sterile electron neutrino conversion in the early universe
hot plasma and in supernova.Comment: 11 page
- …