4 research outputs found

    Kerr nonlinearities and nonclassical states with superconducting qubits and nanomechanical resonators

    Get PDF
    We propose the use of a superconducting charge qubit capacitively coupled to two resonant nanomechanical resonators to generate Yurke-Stoler states, i.e. quantum superpositions of pairs of distinguishable coherent states 180∘^\circ out of phase with each other. This is achieved by effectively implementing Kerr nonlinearities induced through application of a strong external driving field in one of the resonators. A simple study of the effect of dissipation on our scheme is also presented, and lower bounds of fidelity and purity of the generated state are calculated. Our procedure to implement a Kerr nonlinearity in this system may be used for high precision measurements in nanomechanical resonators.Comment: 5 pages, 2 figures, fixed typo

    A Monte Carlo Method for Modeling Thermal Damping: Beyond the Brownian-Motion Master Equation

    Full text link
    The "standard" Brownian motion master equation, used to describe thermal damping, is not completely positive, and does not admit a Monte Carlo method, important in numerical simulations. To eliminate both these problems one must add a term that generates additional position diffusion. He we show that one can obtain a completely positive simple quantum Brownian motion, efficiently solvable, without any extra diffusion. This is achieved by using a stochastic Schroedinger equation (SSE), closely analogous to Langevin's equation, that has no equivalent Markovian master equation. Considering a specific example, we show that this SSE is sensitive to nonlinearities in situations in which the master equation is not, and may therefore be a better model of damping for nonlinear systems.Comment: 6 pages, revtex4. v2: numerical results for a nonlinear syste

    Vibration-enhanced quantum transport

    Full text link
    In this paper, we study the role of collective vibrational motion in the phenomenon of electronic energy transfer (EET) along a chain of coupled electronic dipoles with varying excitation frequencies. Previous experimental work on EET in conjugated polymer samples has suggested that the common structural framework of the macromolecule introduces correlations in the energy gap fluctuations which cause coherent EET. Inspired by these results, we present a simple model in which a driven nanomechanical resonator mode modulates the excitation energy of coupled quantum dots and find that this can indeed lead to an enhancement in the transport of excitations across the quantum network. Disorder of the on-site energies is a key requirement for this to occur. We also show that in this solid state system phase information is partially retained in the transfer process, as experimentally demonstrated in conjugated polymer samples. Consequently, this mechanism of vibration enhanced quantum transport might find applications in quantum information transfer of qubit states or entanglement.Comment: 7 pages, 6 figures, new material, included references, final published versio

    Motional effects on the efficiency of excitation transfer

    Full text link
    Energy transfer plays a vital role in many natural and technological processes. In this work, we study the effects of mechanical motion on the excitation transfer through a chain of interacting molecules with application to biological scenarios of transfer processes. Our investigation demonstrates that, for various types of mechanical oscillations, the transfer efficiency is significantly enhanced over that of comparable static configurations. This enhancement is a genuine quantum signature, and requires the collaborative interplay between the quantum-coherent evolution of the excitation and the mechanical motion of the molecules; it has no analogue in the classical incoherent energy transfer. This effect may not only occur naturally, but it could be exploited in artificially designed systems to optimize transport processes. As an application, we discuss a simple and hence robust control technique.Comment: 25 pages, 11 figures; completely revised; version accepted for publicatio
    corecore