5,146 research outputs found

    Chemical and thermal structure of protoplanetary disks as observed with ALMA

    Full text link
    We predict how protoplanetary disks around low-mass young stars would appear in molecular lines observed with the ALMA interferometer. Our goal is to identify those molecules and transitions that can be used to probe and distinguish between chemical and physical disk structure and to define necessary requirements for ALMA observations. Disk models with and without vertical temperature gradient as well as with uniform abundances and those from a chemical network are considered. As an example, we show the channel maps of HCO+^+(4-3) synthesized with a non-LTE line radiative transfer code and used as an input to the GILDAS ALMA simulator to produce noise-added realistic images. The channel maps reveal complex asymmetric patterns even for the model with uniform abundances and no vertical thermal gradient. We find that a spatial resolution of 0.2-0.5\arcsec and 0.5--10 hours of integration time will be needed to disentangle large-scale temperature gradients and the chemical stratification in disks in lines of abundant molecules.Comment: 4 pages, 3 figures, 1 table, accepted for publication to ApJ Letter

    Block Copolymer at Nano-Patterned Surfaces

    Full text link
    We present numerical calculations of lamellar phases of block copolymers at patterned surfaces. We model symmetric di-block copolymer films forming lamellar phases and the effect of geometrical and chemical surface patterning on the alignment and orientation of lamellar phases. The calculations are done within self-consistent field theory (SCFT), where the semi-implicit relaxation scheme is used to solve the diffusion equation. Two specific set-ups, motivated by recent experiments, are investigated. In the first, the film is placed on top of a surface imprinted with long chemical stripes. The stripes interact more favorably with one of the two blocks and induce a perpendicular orientation in a large range of system parameters. However, the system is found to be sensitive to its initial conditions, and sometimes gets trapped into a metastable mixed state composed of domains in parallel and perpendicular orientations. In a second set-up, we study the film structure and orientation when it is pressed against a hard grooved mold. The mold surface prefers one of the two components and this set-up is found to be superior for inducing a perfect perpendicular lamellar orientation for a wide range of system parameters

    Active suppression of dephasing in Josephson-junction qubits

    Full text link
    Simple majority code correcting kk dephasing errors by encoding a qubit of information into 2k+12k+1 physical qubits is studied quantitatively. We derive an equation for quasicontinuous evolution of the density matrix of encoded quantum information under the error correction procedure in the presence of dephasing noise that in general can be correlated at different qubits. Specific design of the Josephson-junction circuit implementing this scheme is suggested.Comment: 4 pages, 1 figur

    On the Influence of Uncertainties in Chemical Reaction Rates on Results of the Astrochemical Modelling

    Full text link
    With the chemical reaction rate database UMIST95 (Millar et al. 1997) we analyze how uncertainties in rate constants of gas-phase chemical reactions influence the modelling of molecular abundances in the interstellar medium. Random variations are introduced into the rate constants to estimate the scatter in theoretical abundances. Calculations are performed for dark and translucent molecular clouds where gas phase chemistry is adequate. Similar approach was used by Pineau des Forets & Roueff (2000) for the study of chemical bistability. All the species are divided into 6 sensitivity groups according to the value of the scatter in their model abundances computed with varied rate constants. It is shown that the distribution of species within these groups depends on the number of atoms in a molecule and on the adopted physical conditions. The simple method is suggested which allows to single out reactions that are most important for the evolution of a given species.Comment: 4 pages. To appear in the proceedings of the 4th Cologne-Bonn Zermatt Symposiu

    Molecular line radiative transfer in protoplanetary disks: Monte Carlo simulations versus approximate methods

    Full text link
    We analyze the line radiative transfer in protoplanetary disks using several approximate methods and a well-tested Accelerated Monte Carlo code. A low-mass flaring disk model with uniform as well as stratified molecular abundances is adopted. Radiative transfer in low and high rotational lines of CO, C18O, HCO+, DCO+, HCN, CS, and H2CO is simulated. The corresponding excitation temperatures, synthetic spectra, and channel maps are derived and compared to the results of the Monte Carlo calculations. A simple scheme that describes the conditions of the line excitation for a chosen molecular transition is elaborated. We find that the simple LTE approach can safely be applied for the low molecular transitions only, while it significantly overestimates the intensities of the upper lines. In contrast, the Full Escape Probability (FEP) approximation can safely be used for the upper transitions (J_{\rm up} \ga 3) but it is not appropriate for the lowest transitions because of the maser effect. In general, the molecular lines in protoplanetary disks are partly subthermally excited and require more sophisticated approximate line radiative transfer methods. We analyze a number of approximate methods, namely, LVG, VEP (Vertical Escape Probability) and VOR (Vertical One Ray) and discuss their algorithms in detail. In addition, two modifications to the canonical Monte Carlo algorithm that allow a significant speed up of the line radiative transfer modeling in rotating configurations by a factor of 10--50 are described.Comment: 47 pages, 12 figures, accepted for publication in Ap

    Entropy-induced smectic phases in rod-coil copolymers

    Full text link
    We present a self-consistent field theory (SCFT) of semiflexible (wormlike) diblock copolymers, each consisting of a rigid and a flexible part. The segments of the polymers are otherwise identical, in particular with regard to their interactions, which are taken to be of an Onsager excluded-volume type. The theory is developed in a general three-dimensional form, as well as in a simpler one-dimensional version. Using the latter, we demonstrate that the theory predicts the formation of a partial-bilayer smectic-A phase in this system, as shown by profiles of the local density and orientational distribution functions. The phase diagram of the system, which includes the isotropic and nematic phases, is obtained in terms of the mean density and rigid-rod fraction of each molecule. The nematic-smectic transition is found to be second order. Since the smectic phase is induced solely by the difference in the rigidities, the onset of smectic ordering is shown to be an entropic effect and therefore does not have to rely on additional Flory-Huggins-type repulsive interactions between unlike chain segments. These findings are compared with other recent SCFT studies of similar copolymer models and with computer simulations of several molecular models.Comment: 13 pages, 8 figure

    Climate change and water resources in arid regions : uncertainty of the baseline time period

    Get PDF
    Recent climate change studies have given a lot of attention to the uncertainty that stems from general circulation models (GCM), greenhouse gas emission scenarios, hydrological models and downscaling approaches. Yet, the uncertainty that stems from the selection of the baseline period has not been studied. Accordingly, the main research question is as follows: What would be the differences and/or the similarities in the evaluation of climate change impacts between the GCM and the delta perturbation scenarios using different baseline periods? This article addresses this issue through comparison of the results of two different baseline periods, investigating the uncertainties in evaluating climate change impact on the hydrological characteristics of arid regions. The Lower Zab River Basin (Northern Iraq) has been selected as a representative case study. The research outcomes show that the considered baseline periods suggest increases and decreases in the temperature and precipitation (P), respectively, over the 2020, 2050 and 2080 periods. The two climatic scenarios are likely to lead to similar reductions in the reservoir mean monthly flows, and subsequently, their maximum discharge is approximately identical. The predicted reduction in the inflow for the 2080–2099 time period fluctuates between 31 and 49% based on SRA1B and SRA2 scenarios, respectively. The delta perturbation scenario permits the sensitivity of the climatic models to be clearly determined compared to the GCM. The former allows for a wide variety of likely climate change scenarios at the regional level and are easier to generate and apply so that they could complement the latter

    Interfaces of Modulated Phases

    Full text link
    Numerically minimizing a continuous free-energy functional which yields several modulated phases, we obtain the order-parameter profiles and interfacial free energies of symmetric and non-symmetric tilt boundaries within the lamellar phase, and of interfaces between coexisting lamellar, hexagonal, and disordered phases. Our findings agree well with chevron, omega, and T-junction tilt-boundary morphologies observed in diblock copolymers and magnetic garnet films.Comment: 4 page

    Elastic Spin Relaxation Processes in Semiconductor Quantum Dots

    Full text link
    Electron spin decoherence caused by elastic spin-phonon processes is investigated comprehensively in a zero-dimensional environment. Specifically, a theoretical treatment is developed for the processes associated with the fluctuations in the phonon potential as well as in the electron procession frequency through the spin-orbit and hyperfine interactions in the semiconductor quantum dots. The analysis identifies the conditions (magnetic field, temperature, etc.) in which the elastic spin-phonon processes can dominate over the inelastic counterparts with the electron spin-flip transitions. Particularly, the calculation results illustrate the potential significance of an elastic decoherence mechanism originating from the intervalley transitions in semiconductor quantum dots with multiple equivalent energy minima (e.g., the X valleys in SiGe). The role of lattice anharmonicity and phonon decay in spin relaxation is also examined along with that of the local effective field fluctuations caused by the stochastic electronic transitions between the orbital states. Numerical estimations are provided for typical GaAs and Si-based quantum dots.Comment: 57 pages, 14 figure
    • …
    corecore