1,019 research outputs found

    Magnetic-field enhancement of performance of superconducting nanowire single-photon detector

    Full text link
    We present SNSPDs from NbN nanowires shaped after square-spiral that allows an increase not only in critical currents but also an extension of spectral detection efficiencies by just applying an external magnetic field. Using negative electron-beam lithography with the positive resist for shaping nanowires, made it possible to reduce the inner bend radius. Consequently, the effect of critical-current enhancement in the magnetic field becomes stronger than it was demonstrated earlier. Here we achieved a 13% increase of the critical current in the magnetic field. We measured spectra of the single-photon detection efficiency in the wavelength range from 400 to 1100 nm in the magnetic field. At zero field, the square spiral has the spectrum similar to that of a meander. At the field providing the maximum of the critical current, the detection efficiency and the cut-off wavelength in the spectrum increase by 20% and by 54%, correspondingly. The magnetic-field dependence of dark count rate is well described by proposed analytical model

    Geometrical jitter and bolometric regime in photon detection by straight superconducting nanowire

    Full text link
    We present a direct observation of the geometrical jitter in single photon detection by a straight superconducting nanowire. Differential measurement technique was applied to the 180-{\mu}m long nanowire similar to those commonly used in the technology of superconducting nanowire single photon detectors (SNSPD). A non-gaussian geometrical jitter appears as a wide almost uniform probability distribution (histogram) of the delay time (latency) of the nanowire response to detected photon. White electrical noise of the readout electronics causes broadened, Gaussian shaped edges of the histogram. Subtracting noise contribution, we found for the geometrical jitter a standard deviation of 8.5 ps and the full width at half maximum (FWHM) of the distribution of 29 ps. FWHM corresponds to the propagation speed of the electrical signal along the nanowire of 6.2×1066.2\times10^{6} m/s or 0.02 of the speed of light. Alternatively the propagation speed was estimated from the central frequency of the measured first order self-resonance of the nanowire. Both values agree well with each other and with previously reported values. As the intensity of the incident photon flux increases, the wide probability distribution collapses into a much narrower Gaussian distribution with a standard deviation dominated by the noise of electronics. We associate the collapse of the histogram with the transition from the discrete, single photon detection to the uniform bolometric regim

    Magnetic-field enhancement of performance of superconducting nanowire single-photon detector

    Get PDF
    We present SNSPDs from NbN nanowires shaped after square-spiral that allows an increase not only in critical currents but also an extension of spectral detection efficiencies by just applying an external magnetic field. Using negative electron-beam lithography with the positive resist for shaping nanowires, made it possible to reduce the inner bend radius. Consequently, the effect of critical-current enhancement in the magnetic field becomes stronger than it was demonstrated earlier. Here we achieved a 13% increase of the critical current in the magnetic field. We measured spectra of the single-photon detection efficiency in the wavelength range from 400 to 1100 nm in the magnetic field. At zero field, the square spiral has the spectrum similar to that of a meander. At the field providing the maximum of the critical current, the detection efficiency and the cut-off wavelength in the spectrum increase by 20% and by 54%, correspondingly. The magnetic-field dependence of dark count rate is well described by proposed analytical model

    Abnormal Response of Costal Chondrocytes to Acidosis in Patients with Chest Wall Deformity

    Get PDF
    Costal cartilage is much understudied compared to the load bearing cartilages. Abnormally grown costal cartilages are associated with the inherited chest wall deformities pectus excavatum and pectus carinatum resulting in sunken or pigeon chest respectively. A lack of understanding of the ultrastructural and molecular biology properties of costal cartilage is a major confounder in predicting causes and outcomes of these disorders. Due to the avascular nature of cartilage, chondrocytes metabolize glycolytically, producing an acidic environment. During physical activity hydrogen ions move within cartilage driven by compressive forces, thus at any one time, chondrocytes experience transient changes in pH. A variety of ion channels on chondrocytes plasma membrane equip them to function in the rapidly changing conditions they experience. In this paper we describe reduced expression of the ASIC2 gene encoding the acid sensing ion channel isoform 2 (previously referred to as ACCN1 or ACCN) in patients with chest wall deformities. We hypothesized that chondrocytes from these patients cannot respond normally to changes in pH that are an integral part of the biology of this tissue. Activation of ASICs indirectly creates a cascade ultimately dependent on intracellular calcium transients. The objective of this paper was to compare internal calcium signaling in response to external pH changes in costal chondrocytes from patients with chest wall deformities and healthy individuals. Although the molecular mechanism through which chondrocytes are regulated by acidosis remains unknown, we observed reduced amplitudes of calcium rise in patient chondrocytes exposed to low pH that become further impaired upon repeat exposure

    Effect of Dehydrated Trehalose Matrix on the Kinetics of Forward Electron Transfer Reactions in Photosystem I

    Get PDF
    The effect of dehydration on the kinetics of forward electron transfer (ET) has been studied in cyanobacterial photosystem I (PS I) complexes in a trehalose glassy matrix by time-resolved optical and EPR spectroscopies in the 100 fs to 1 ms time domain. The kinetics of the flash-induced absorption changes in the subnanosecond time domain due to primary and secondary charge separation steps were monitored by pump–probe laser spectroscopy with 20-fs low-energy pump pulses centered at 720 nm. The back-reaction kinetics of P700 were measured by high-field time-resolved EPR spectroscopy and the forward kinetics of A∙−1A/A∙−1B→FX by time-resolved optical spectroscopy at 480 nm. The kinetics of the primary ET reactions to form the primary P∙+700A∙−0 and the secondary P∙+700A∙−1 ion radical pairs were not affected by dehydration in the trehalose matrix, while the yield of the P∙+700A∙−1 was decreased by ~20%. Forward ET from the phylloquinone molecules in the A∙−1A and A∙−1B sites to the iron–sulfur cluster FX slowed from ~220 ns and ~20 ns in solution to ~13 μs and ~80 ns, respectively. However, as shown by EPR spectroscopy, the ~15 μs kinetic phase also contains a small contribution from the recombination between A∙−1B and P∙+700. These data reveal that the initial ET reactions from P700 to secondary phylloquinone acceptors in the A- and B-branches of cofactors (A1A and A1B) remain unaffected whereas ET beyond A1A and A1B is slowed or prevented by constrained protein dynamics due to the dry trehalose glass matrix

    Local Atomic Mechanism for the Diffusion Jump of Carbon Atom in Austenite

    Get PDF
    A carbon atom diffusion jump in iron austenite was considered as a subsequence of transformations between the cementite structure and the regular FCC packing. A model of this transformation was based on a 2D model of the elemental act of a polymorph transformation in metals. The energy threshold of this transformation has been calculated using the Morse pair potential. It occurs that the estimated enthalpy of the transformation is equal to 149±20 kJ/mole which is in satisfactory agreement with experimental data
    • …
    corecore