42 research outputs found

    The variation of the magnetic field of the Ap star HD~50169 over its 29 year rotation period

    Full text link
    Context. The Ap stars that rotate extremely slowly, with periods of decades to centuries, represent one of the keys to the understanding of the processes leading to the differentiation of stellar rotation. Aims. We characterise the variations of the magnetic field of the Ap star HD 50169 and derive constraints about its structure. Methods. We combine published measurements of the mean longitudinal field of HD 50169 with new determinations of this field moment from circular spectropolarimetry obtained at the 6-m telescope BTA of the Special Astrophysical Observatory of the Russian Academy of Sciences. For the mean magnetic field modulus , literature data are complemented by the analysis of ESO spectra, both newly acquired and from the archive. Radial velocities are also obtained from these spectra. Results. We present the first determination of the rotation period of HD 50169, Prot = (29.04+/-0.82) y. HD 50169 is currently the longest-period Ap star for which magnetic field measurements have been obtained over more than a full cycle. The variation curves of both and have a significant degree of anharmonicity, and there is a definite phase shift between their respective extrema. We confirm that HD 50169 is a wide spectroscopic binary, refine its orbital elements, and suggest that the secondary is probably a dwarf star of spectral type M. Conclusions. The shapes and mutual phase shifts of the derived magnetic variation curves unquestionably indicate that the magnetic field of HD 50169 is not symmetric about an axis passing through its centre. Overall, HD 50169 appears similar to the bulk of the long-period Ap stars.Comment: 10 pages, 3 figures, accepted for publication in A&

    HD 965: An extremely peculiar A star with an extremely long rotation period

    Full text link
    Context. One of the keys to understanding the origin of the Ap stars and their significance in the general context of stellar astrophysics is the consideration of the most extreme properties displayed by some of them. In that context, HD 965 is particularly interesting, as it combines some of the most pronounced chemical peculiarities with one of the longest rotation periods known. Aims. We characterise the variations of the magnetic field of the Ap star HD 965 and derive constraints about its structure. Methods. We combine published measurements of the mean longitudinal field of HD 965 with new determinations of this field moment from circular spectropolarimetry obtained at the 6-m telescope BTA of the Special Astrophysical Observatory of the Russian Academy of Sciences. For the mean magnetic field modulus , literature data are complemented by the analysis of ESO archive spectra. Results. We present the first determination of the rotation period of HD 965, P = (16.5+/-0.5) y. HD 965 is only the third Ap star with a period longer than 10 years for which magnetic field measurements have been obtained over more than a full cycle. The variation curve of is well approximated by a cosine wave. does not show any significant variation. The observed behaviour of these field moments is well represented by a simple model consisting of the superposition of collinear dipole, quadrupole and octupole. The distribution of neodymium over the surface of HD 965 is highly non-uniform. The element appears concentrated around the magnetic poles, especially the negative one. Conclusions. The shape of the longitudinal magnetic variation curve of HD 965 indicates that its magnetic field is essentially symmetric about an axis passing through the centre of the star. Overall, as far as its magnetic field is concerned, HD 965 appears similar to the bulk of the long-period Ap stars.Comment: 7 pages, 4 figures, accepted for publication in Astronomy & Astrophysics. arXiv admin note: text overlap with arXiv:1902.0586

    HD 178892 - a cool Ap star with extremely strong magnetic field

    Full text link
    We report a discovery of the Zeeman resolved spectral lines, corresponding to the extremely large magnetic field modulus =17.5 kG, in the cool Ap star HD 178892. The mean longitudinal field of this star reaches 7.5 kG, and its rotational modulation implies the strength of the dipolar magnetic component Bp>=23 kG. We have revised rotation period of the star using the All Sky Automated Survey photometry and determined P=8.2478 d. Rotation phases of the magnetic and photometric maxima of the star coincide with each other. We obtained Geneva photometric observation of HD 178892 and estimated Teff=7700+/-250 K using photometry and the hydrogen Balmer lines. Preliminary abundance analysis reveals abundance pattern typical of rapidly oscillating Ap stars.Comment: Accepted by Astronomy & Astrophysics; 4 pages, 4 figure

    Comprehensive study of the magnetic stars HD 5797 and HD 40711 with large chromium and iron overabundances

    Full text link
    We present the results of a comprehensive study of the chemically peculiar stars HD 5797 and HD 40711. The stars have the same effective temperature, Teff = 8900 K, and a similar chemical composition with large iron (+1.5 dex) and chromium (+3 dex) overabundances compared to the Sun. The overabundance of rare-earth elements typically reaches +3 dex. We have measured the magnetic field of HD 5797. The longitudinal field component Be has been found to vary sinusoidally between -100 and +1000 G with a period of 69 days. Our estimate of the evolutionary status of the stars suggests that HD 5797 and HD 40711, old objects with an age t \approx 5 \times 108 yr, are near the end of the core hydrogen burning phase.Comment: 26 pages, 5 Encapsulated Postscript figure

    Study of chemically peculiar stars – I. High-resolution spectroscopy and K2 photometry of Am stars in the region of M44

    Get PDF
    ABSTRACT We present a study based on the high-resolution spectroscopy and K2 space photometry of five chemically peculiar stars in the region of the open cluster M44. The analysis of the high-precision photometric K2 data reveals that the light variations in HD 73045 and HD 76310 are rotational in nature and caused by spots or cloud-like co-rotating structures, which are non-stationary and short-lived. The time-resolved radial velocity measurements, in combination with the K2 photometry, confirm that HD 73045 does not show any periodic variability on time-scales shorter than 1.3 d, contrary to previous reports in the literature. In addition to these new rotational variables, we discovered a new heartbeat system, HD 73619, where no pulsational signatures are seen. The spectroscopic and spectropolarimetric analyses indicate that HD 73619 belongs to the peculiar Am class, with either a weak or no magnetic field, considering the 200-G detection limit of our study. The least-squares deconvolution profiles for HD 76310 indicate a complex structure in its spectra, suggesting that this star is either part of a binary system or surrounded by a cloud shell. When placed in the Hertzsprung–Russell diagram, all studied stars are evolved from the main sequence and situated in the Ξ΄ Scuti instability strip. This work is relevant for further detailed studies of chemically peculiar stars, for example on inhomogeneities (including spots) in the absence of magnetic fields and the origin of the pulsational variability in heartbeat systems

    ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ псСвдослучайной ΠΏΠΎΡΠ»Π΅Π΄Π²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π½Π° основС хаоса для создания ΡˆΠΈΡ€ΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½Ρ‹Ρ… Ρ‚Π΅Π»Π΅ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… систСмы с ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½Ρ‹ΠΌΠΈ характСристиками

    No full text
    ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°. Π’Π΅Π»Π΅ΠΊΠΎΠΌΡƒΠ½Ρ–ΠΊΠ°Ρ†Ρ–ΠΉΠ½Ρ– систСми Π· ΡˆΠΈΡ€ΠΎΠΊΠΎΡΠΌΡƒΠ³ΠΎΠ²ΠΈΠΌ сигналом ΠΌΠ°ΡŽΡ‚ΡŒ Π±Π΅Π·ΠΏΠ΅Ρ€Π΅Ρ‡Π½Ρ– ΠΏΠ΅Ρ€Π΅Π²Π°Π³ΠΈ: ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½Ρ– Π·Π°Π²Π°Π΄ΠΎΡΡ‚Ρ–ΠΉΠΊΡ–ΠΉΠΊΡ‹ΡΡ‚ΡŒ ΠΏΡ€ΠΈ Π²ΡƒΠ·ΡŒΠΊΠΎΡΠΌΡƒΠ³ΠΎΠ²ΠΈΡ… Ρ– ΡˆΠΈΡ€ΠΎΠΊΠΎΡΠΌΡƒΠ³ΠΎΠ²ΠΈΡ… ΠΏΠ΅Ρ€Π΅ΡˆΠΊΠΎΠ΄Π°Ρ…, ΠΊΠΎΠ½Ρ„Ρ–Π΄Π΅Π½Ρ†Ρ–ΠΉΠ½Ρ–ΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Ρ– Ρ–Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ—, Π° Ρ‚Π°ΠΊΠΎΠΆ ΠΏΠΎΠ»Ρ–ΠΏΡˆΠ΅Π½Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ°Π³Π½Ρ–Ρ‚Π½Ρƒ ΡΡƒΠΌΡ–ΡΠ½Ρ–ΡΡ‚ΡŒ Π· сусідніми Ρ€Π°Π΄Ρ–ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΠΌΠΈ пристроями. Широкосмуговий сигнал Ρ„ΠΎΡ€ΠΌΡƒΡ”Ρ‚ΡŒΡΡ як ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ прямого Ρ€ΠΎΠ·ΡˆΠΈΡ€Π΅Π½Π½Ρ спСктру Π· використанням Π²Ρ–Π΄ΠΎΠΌΠΈΡ… класичних псСвдовипадкових послідовностСй (ΠŸΠ’ΠŸ) : m- послідовностСй, послідовностСй Касами, Π“ΠΎΠ»Π΄Π°,,Уолша, які Π² ΠΏΡ€ΠΈΠΉΠΌΠ°Ρ‡Ρ– ΠΌΠΎΠΆΠ½Π° ΠΏΡ–Π΄Ρ–Π±Ρ€Π°Ρ‚ΠΈ Ρ– прийняти сигнал. ΠœΠ΅Ρ‚Π° Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ. БтворСння ΠŸΠ’ΠŸ Π½Π° основі хаосу, які ΠΏΡ€ΠΈΠΉΠΌΠ°ΡŽΡ‡ΠΈΠΉ Π°Π±ΠΎΠ½Π΅Π½Ρ‚ ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΎ Π½Π΅ Π·ΠΌΠΎΠΆΠ΅ ΠΏΡ–Π΄Ρ–Π±Ρ€Π°Ρ‚ΠΈ, Ρ– Ρ‚Π°ΠΊΠΈΠΌ Ρ‡ΠΈΠ½ΠΎΠΌ Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΠΈΡ‚ΠΈ ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½Ρƒ ΠΊΠΎΠ½Ρ„Ρ–Π΄Π΅Π½Ρ†Ρ–ΠΉΠ½Ρ–ΡΡ‚ΡŒ ΠΏΡ€ΠΈΠΉΠΎΠΌΡƒ Ρ–Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ—. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ—. Π— використанням ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎΡ— ΠΌΠΎΠ΄Π΅Π»Ρ– Ρ…Π°ΠΎΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ логістичного відобраТСння, яка, як ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½Ρ– дослідТСння, Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡ” Π½Π°ΠΉΠΊΡ€Π°Ρ‰Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ, Π° Ρ‚Π°ΠΊΠΎΠΆ Π·Π²Π΅Ρ€Ρ‚Π°ΡŽΡ‡ΠΈΡΡŒ Π΄ΠΎ Π±Ρ–Ρ„ΡƒΡ€ΠΊΠ°Ρ†Ρ–ΠΉΠ½ΠΎΡ— Π΄Ρ–Π°Π³Ρ€Π°ΠΌΠΈ Π€Π΅ΠΉΠ³Π΅Π½Π±Π°ΡƒΠΌΠ°, Π²ΠΈΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡŒΡΡ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ 3-Ρ… сСкрСтних ΠΊΠ»ΡŽΡ‡Ρ–Π² Ρ– ΡΡ‚Π²ΠΎΡ€ΡŽΡŽΡ‚ΡŒΡΡ ΠŸΠ’ΠŸ Π²ΠΈΠ±Ρ€Π°Π½ΠΎΡ— Π΄ΠΎΠ²ΠΆΠΈΠ½ΠΈ. На основі застосування Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎΠ³ΠΎ Π² систСмі ΠœΠΠ’Π›ΠΠ‘ Π³Ρ€Π°Ρ„Ρ–Ρ‡Π½ΠΎΠ³ΠΎ інтСрфСйсу користувача Π·Π΄Ρ–ΠΉΡΠ½ΡŽΡ”Ρ‚ΡŒΡΡ корСляційний Π°Π½Π°Π»Ρ–Π· ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… ΠŸΠ’ΠŸ Ρ– Π²ΠΈΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡŒΡΡ ΠŸΠ’ΠŸ Π· ΠΌΡ–Π½Ρ–ΠΌΠ°Π»ΡŒΠ½ΠΈΠΌ Ρ€Ρ–Π²Π½Π΅ΠΌ Π±Ρ–Ρ‡Π½ΠΈΡ… ΠΏΠ΅Π»ΡŽΡΡ‚ΠΎΠΊ автокорСляційної Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ—. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ. Шляхом Π΅ΠΌΠΏΡ–Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ Π²ΠΈΠ±ΠΎΡ€Ρƒ 3 - Ρ… сСкрСтних ΠΊΠ»ΡŽΡ‡Ρ–Π²-динамичСского ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π΄Ρ–Π°Π³Ρ€Π°ΠΌΠΈ Π€Π΅ΠΉΠ³Π΅Π½Π±Π°ΡƒΠΌΠ°, ΠΏΠΎΡ‡Π°Ρ‚ΠΊΠΎΠ²ΠΎΠ³ΠΎ значСння послідовності Ρ– Π½ΠΎΠΌΠ΅Ρ€Π° ΠΏΠΎΡ‡Π°Ρ‚ΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΡƒ ΠŸΠ’ΠŸ, Π° Ρ‚Π°ΠΊΠΎΠΆ дослідТСння автокорСляційної Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ— ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– ΠŸΠ’ΠŸ Π· прийнятним для ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ використання Ρ€Ρ–Π²Π½Π΅ΠΌ Π±Ρ–Ρ‡Π½ΠΈΡ… ΠΏΠ΅Π»ΡŽΡΡ‚ΠΎΠΊ автокорСляційної Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ— Π½Π΅ Π±Ρ–Π»ΡŒΡˆΠ΅ 0,25. Висновки. Використання Π²Ρ–Π΄ΠΎΠΌΠΈΡ… псСвдовипадкових ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ-Уолша, Касами, Π“ΠΎΠ»Π΄Π° ΠΏΡ€ΠΈ створСнні систСм Π· ΡˆΡƒΠΌΠΎΠΏΠΎΠ΄Ρ–Π±Π½ΠΈΠΌ сигналом Π½Π΅ Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡ” ΠΏΠΎΠ²Π½Ρƒ ΠΊΠΎΠ½Ρ„Ρ–Π΄Π΅Π½Ρ†Ρ–ΠΉΠ½Ρ–ΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Ρ– Ρ–Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ—, ΠΎΡΠΊΡ–Π»ΡŒΠΊΠΈ Ρ—Ρ… ΠΌΠΎΠΆΠ½Π° ΠΏΡ–Π΄Ρ–Π±Ρ€Π°Ρ‚ΠΈ Π² ΠΏΡ€ΠΈΠΉΠΌΠ°Ρ‡Ρ–. ΠΠ°ΠΉΠ±Ρ–Π»ΡŒΡˆ прийнятним Π·Π° ΠΊΡ€ΠΈΡ‚Π΅Ρ€Ρ–Ρ”ΠΌ ΠΌΡ–Π½Ρ–ΠΌΡƒΠΌΡƒ Π±Ρ–Ρ‡Π½ΠΎΡ— ΠΏΠ΅Π»ΡŽΡΡ‚ΠΊΠΈ автокорСляційної Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ— -Π½Π΅ Π³Ρ–Ρ€ΡˆΠ΅ 0,25,Ρ” використання хаосу Π½Π° основі логістичного відобраТСння Π€Π΅ΠΉΠ³Π΅Π½Π±Π°ΡƒΠΌΠ°. ΠŸΡ€ΠΈ створСнні псСвдовипадкових послідовностСй Π½Π° основі хаосу Π½Π°ΠΉΠΊΡ€Π°Ρ‰Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π΄Π°Ρ” Π²ΠΈΠ±Ρ–Ρ€ максимального значСння Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π΄Ρ–Π°Π³Ρ€Π°ΠΌΠΈ Π€Π΅ΠΉΠ³Π΅Π½Π±Π°ΡƒΠΌΠ° Π½Π° Ρ€Ρ–Π²Π½Ρ– Π³Ρ€Π°Π½ΠΈΡ‡Π½ΠΎΠ³ΠΎ значСння, Ρ€Ρ–Π²Π½ΠΎΠ³ΠΎ 4, Π· Ρ‚ΠΎΡ‡Π½Ρ–ΡΡ‚ΡŽ 0,05.Background. Telecommunication systems with a broadband signal have undoubted advantages: increased noise immunity with narrowband and wideband interference, confidentiality of information transmission, as well as improved electromagnetic compatibility with neighboring radio-electronic devices. A broadband signal is usually formed by direct spread spectrum using well-known classical pseudo-random sequences (PRS): m-sequences, Kasami, Gold, Walsh sequences, which can be decoded and received at the receiver. Objective. The aim of the paper is creating PRS on the basis of chaos, which the subscriber is practically unable to decode, and thus ensure increased confidentiality of information transmission. Methods. Using the mathematical model of chaotic logistic mapping, which, as shown by preliminary studies, provides the best results, as well as referring to the bifurcation diagram of Feigenbaum, the parameters of 3-secret keys are defined and the PRS of the selected length is created. Based on the application of the graphical user interface developed in the MATLAB system, a correlation analysis of the resulting PRS is performed and the PRS is determined with the minimum side lobes of the autocorrelation function. Results. By empirical decision of 3 secret keys of the dynamic parameter of the Feigenbaum diagram, the initial value of the sequence and the number of the initial pulse of the PRS, as well as the study of the autocorrelation function, we obtained a PRS with a side lobe level of the autocorrelation function acceptable for practical use of no more than 0.25. Conclusions. The use of well-known pseudo-random sequence: Walsh’s, Kasami’s, Gold’s, creating a system with a noise-like signal doesn’t ensure complete confidentiality of information transmission, since they can be decoded. The most acceptable by the criterion of the side lobe minimum of the autocorrelation function – no worse than 0.25 – is the use of chaos based on the Feigenbaum logistic map. When creating pseudo-random sequences based on chaos, the best results are obtained by choosing the maximum value of the dynamic parameter of the Feigenbaum diagram at the level of the boundary value equal to 4, with an accuracy of 0.05.ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°. Π’Π΅Π»Π΅ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ систСмы с ΡˆΠΈΡ€ΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½Ρ‹ΠΌ сигналом ΠΈΠΌΠ΅ΡŽΡ‚ нСсомнСнныС прСимущСства: ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹Π΅ помСхоустойчивости ΠΏΡ€ΠΈ узкополосных ΠΈ ΡˆΠΈΡ€ΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½Ρ‹Ρ… ΠΏΠΎΠΌΠ΅Ρ…Π°Ρ…, ΠΊΠΎΠ½Ρ„ΠΈΠ΄Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½ΡƒΡŽ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½ΡƒΡŽ ΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΠΌΠΎΡΡ‚ΡŒ с сосСдними радиоэлСктронными устройствами. Широкополосный сигнал формируСтся ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ прямого Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΡ спСктра с использованиСм извСстных классичСских псСвдослучайныС ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ (ПБП): m-ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ, ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Касами, Π“ΠΎΠ»Π΄Π°,,Уолша ,ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Ρ‚ΡŒ ΠΈ ΠΏΡ€ΠΈΠ½ΡΡ‚ΡŒ сигнал. ЦСль исслСдований. Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ПБП Π½Π° основС хаоса, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‰ΠΈΠΉ Π°Π±ΠΎΠ½Π΅Π½Ρ‚ практичСски Π½Π΅ смоТСт ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Ρ‚ΡŒ, ΠΈ Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΡƒΡŽ ΠΊΠΎΠ½Ρ„ΠΈΠ΄Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈΠ΅ΠΌΠ° ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ. Π‘ использованиСм матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ хаотичСского логистичСского отобраТСния, которая, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ исслСдования, обСспСчиваСт Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π°ΡΡΡŒ ΠΊ Π±ΠΈΡ„ΡƒΡ€ΠΊΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ΅ Π€Π΅ΠΉΠ³Π΅Π½Π±Π°ΡƒΠΌΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ 3-сСкрСтных ΠΊΠ»ΡŽΡ‡Π΅ΠΉ ΠΈ ΡΠΎΠ·Π΄Π°ΡŽΡ‚ΡΡ ПБП Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹. На основС примСнСния Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ Π² систСмС ΠœΠΠ’Π›ΠΠ‘ графичСского интСрфСйса ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»Ρ осущСствляСтся коррСляционный Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ПБП ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ПБП с ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… лСпСстков автокоррСляционной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований. ΠŸΡƒΡ‚Π΅ΠΌ эмпиричСского Π²Ρ‹Π±ΠΎΡ€Π° 3- Ρ… сСкрСтных ΠΊΠ»ΡŽΡ‡Π΅ΠΉ-динамичСского ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ Π€Π΅ΠΉΠ³Π΅Π½Π±Π°ΡƒΠΌΠ°, Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ значСния ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ Π½ΠΎΠΌΠ΅Ρ€Π° Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° ПБП, Π° Ρ‚Π°ΠΊΠΆΠ΅ исслСдования автокоррСляционной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ПБП с ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΡ‹ΠΌ для практичСского использования ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… лСпСстков автокоррСляционной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 0,25. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ИспользованиС извСстных псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ-Уолша, Касами, Π“ΠΎΠ»Π΄Π° ΠΏΡ€ΠΈ создании систСм с ΡˆΡƒΠΌΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌ сигналом Π½Π΅ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ ΠΏΠΎΠ»Π½ΡƒΡŽ ΠΊΠΎΠ½Ρ„ΠΈΠ΄Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΈΡ… ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Ρ‚ΡŒ Π² ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ΅. НаиболСС ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΡ‹ΠΌ ΠΏΠΎ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡŽ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ лСпСстка автокоррСляционной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ –нС Ρ…ΡƒΠΆΠ΅ 0,25 являСтся использованиС хаоса Π½Π° основС логистичСского отобраТСния Π€Π΅ΠΉΠ³Π΅Π½Π±Π°ΡƒΠΌΠ°. ΠŸΡ€ΠΈ создании псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π½Π° основС хаоса Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π΄Π°Π΅Ρ‚ Π²Ρ‹Π±ΠΎΡ€ максимального значСния динамичСского ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ Π€Π΅ΠΉΠ³Π΅Π½Π±Π°ΡƒΠΌΠ° Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ Π³Ρ€Π°Π½ΠΈΡ‡Π½ΠΎΠ³ΠΎ значСния, Ρ€Π°Π²Π½ΠΎΠ³ΠΎ 4, с Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ 0,05

    LARVAL STAGES OF TREMATODES IN FRESHWATER SNAILS OF THE CHORNOBYL ZONE OF RADIOACTIVE CONTAMINATION

    No full text
    In 1986, at the Chornobyl Nuclear Power Plant in the Exclusion Zone after an industrial accident, ecosystems began to have several features that distinguish them from the objects of the natural reserve fund. Parasitic systems are an informative indicator of the state of the ecosystem, which is now sporadically applied in the Exclusion Zone. Any change in the parasite population can lead to changes in the host population. The degree of imbalance in the β€œparasite-host” system depends on the strength and nature of the influence of external factors. At the same time, the presence of mutual adaptations of parasitic organisms and snails gives grounds to consider the β€œparasitehost” system comprehensively. Freshwater gastropod snails of various systematic groups, which can be intermediate and secondary hosts for trematode agents, were selected as an object of the study. In order to study freshwater gastropod snails for the presence of larval stages of helminths, snails were collected from such locations as Krasne Lake, Ilya River, Chernobyl Nuclear Power Plant cooling pond, bypass channel of the Chernobyl Nuclear Power Plant cooling pond, left bank of the Prypiat floodplain, Koshevka oxbow lake, Hrubchanskyi canal in the Meshevo village. Based on the results of the research, the presence of larval stages of trematode agents at different stages of their development (redia and metacercaria) parasitizing in the freshwater snails Lymnae stagnalis and Radix auricularia was establishe
    corecore