80 research outputs found

    Flow cytometry detection of surface and intracellular antigens in pancreas from a single mouse embryo

    Get PDF
    Summary: We here report a flow-cytometry-based protocol to measure single-cell protein expression in small samples. The protocol is optimized for simultaneous detection of fluorescent proteins and intracellular and surface antigens in the embryonic pancreas from the mouse. Owing to low cell numbers, current protocols for flow cytometric analysis of embryonic tissues rely on tissue pooling. Our protocol enables analysis of one pancreas per sample, thereby facilitating detection of biological variation and minimizing the number of experimental animals needed.For complete details on the use and execution of this protocol, please refer to Nyeng et al (2019)

    Rac1 regulates pancreatic islet morphogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic islets of Langerhans originate from endocrine progenitors within the pancreatic ductal epithelium. Concomitant with differentiation of these progenitors into hormone-producing cells such cells delaminate, aggregate and migrate away from the ductal epithelium. The cellular and molecular mechanisms regulating islet cell delamination and cell migration are poorly understood. Extensive biochemical and cell biological studies using cultured cells demonstrated that Rac1, a member of the Rho family of small GTPases, acts as a key regulator of cell migration.</p> <p>Results</p> <p>To address the functional role of Rac1 in islet morphogenesis, we generated transgenic mice expressing dominant negative Rac1 under regulation of the Rat Insulin Promoter. Blocking Rac1 function in beta cells inhibited their migration away from the ductal epithelium <it>in vivo</it>. Consistently, transgenic islet cell spreading was compromised <it>in vitro</it>. We also show that the EGF-receptor ligand betacellulin induced actin remodelling and cell spreading in wild-type islets, but not in transgenic islets. Finally, we demonstrate that cell-cell contact E-cadherin increased as a consequence of blocking Rac1 activity.</p> <p>Conclusion</p> <p>Our data support a model where Rac1 signalling controls islet cell migration by modulating E-cadherin-mediated cell-cell adhesion. Furthermore, <it>in vitro </it>experiments show that betacellulin stimulated islet cell spreading and actin remodelling is compromised in transgenic islets, suggesting that betacellulin may act as a regulator of Rac1 activity and islet migration <it>in vivo</it>. Our results further emphasize Rac1 as a key regulator of cell migration and cell adhesion during tissue and organ morphogenesis.</p

    N-CAM Exhibits a Regulatory Function in Pathological Angiogenesis in Oxygen Induced Retinopathy

    Get PDF
    Background: Diabetic retinopathy and retinopathy of prematurity are diseases caused by pathological angiogenesis in the retina as a consequence of local hypoxia. The underlying mechanism for epiretinal neovascularization (tuft formation), which contributes to blindness, has yet to be identified. Neural cell adhesion molecule (N-CAM) is expressed by Muller cells and astrocytes, which are in close contact with the retinal vasculature, during normal developmental angiogenesis. Methodology/Principal Findings: Notably, during oxygen induced retinopathy (OIR) N-CAM accumulated on astrocytes surrounding the epiretinal tufts. Here, we show that N-CAM ablation results in reduced vascular tuft formation due to reduced endothelial cell proliferation despite an elevation in VEGFA mRNA expression, whereas retinal developmental angiogenesis was unaffected. Conclusion/Significance: We conclude that N-CAM exhibits a regulatory function in pathological angiogenesis in OIR. This is a novel finding that can be of clinical relevance in diseases associated with proliferative vasculopathy

    The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response

    Get PDF
    Background: FUS, EWS and TAF15 are structurally similar multifunctional proteins that were first discovered upon characterization of fusion oncogenes in human sarcomas and leukemias. The proteins belong to the FET ( previously TET) family of RNA-binding proteins and are implicated in central cellular processes such as regulation of gene expression, maintenance of genomic integrity and mRNA/microRNA processing. In the present study, we investigated the expression and cellular localization of FET proteins in multiple human tissues and cell types. Results: FUS, EWS and TAF15 were expressed in both distinct and overlapping patterns in human tissues. The three proteins showed almost ubiquitous nuclear expression and FUS and TAF15 were in addition present in the cytoplasm of most cell types. Cytoplasmic EWS was more rarely detected and seen mainly in secretory cell types. Furthermore, FET expression was downregulated in differentiating human embryonic stem cells, during induced differentiation of neuroblastoma cells and absent in terminally differentiated melanocytes and cardiac muscle cells. The FET proteins were targeted to stress granules induced by heat shock and oxidative stress and FUS required its RNA-binding domain for this translocation. Furthermore, FUS and TAF15 were detected in spreading initiation centers of adhering cells. Conclusion: Our results point to cell-specific expression patterns and functions of the FET proteins rather than the housekeeping roles inferred from earlier studies. The localization of FET proteins to stress granules suggests activities in translational regulation during stress conditions. Roles in central processes such as stress response, translational control and adhesion may explain the FET proteins frequent involvement in human cancer

    An insulin hypersecretion phenotype precedes pancreatic Ξ² cell failure in MODY3 patient-specific cells

    Get PDF
    MODY3 is a monogenic hereditary form of diabetes caused by mutations in the transcription factor HNF1A. The patients progressively develop hyperglycemia due to perturbed insulin secretion, but the pathogenesis is unknown. Using patient-specific hiPSCs, we recapitulate the insulin secretion sensitivity to the membrane depolarizing agent sulfonylurea commonly observed in MODY3 patients. Unexpectedly, MODY3 patient-specific HNF1A+/R272C Ξ² cells hypersecrete insulin both in vitro and in vivo after transplantation into mice. Consistently, we identified a trend of increased birth weight in human HNF1A mutation carriers compared with healthy siblings. Reduced expression of potassium channels, specifically the KATP channel, in MODY3 Ξ² cells, increased calcium signaling, and rescue of the insulin hypersecretion phenotype by pharmacological targeting ATP-sensitive potassium channels or low-voltage-activated calcium channels suggest that more efficient membrane depolarization underlies the hypersecretion of insulin in MODY3 Ξ² cells. Our findings identify a pathogenic mechanism leading to Ξ² cell failure in MODY3.Peer reviewe

    Quantitative Comparison of Constitutive Promoters in Human ES cells

    Get PDF
    BACKGROUND: Constitutive promoters that ensure sustained and high level gene expression are basic research tools that have a wide range of applications, including studies of human embryology and drug discovery in human embryonic stem cells (hESCs). Numerous cellular/viral promoters that ensure sustained gene expression in various cell types have been identified but systematic comparison of their activities in hESCs is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: We have quantitatively compared promoter activities of five commonly used constitutive promoters, including the human Ξ²-actin promoter (ACTB), cytomegalovirus (CMV), elongation factor-1Ξ±, (EF1Ξ±), phosphoglycerate kinase (PGK) and ubiquitinC (UbC) in hESCs. Lentiviral gene transfer was used to ensure stable integration of promoter-eGFP constructs into the hESCs genome. Promoter activities were quantitatively compared in long term culture of undifferentiated hESCs and in their differentiated progenies. CONCLUSION/SIGNIFICANCE: The ACTB, EF1Ξ± and PGK promoters showed stable activities during long term culture of undifferentiated hESCs. The ACTB promoter was superior by maintaining expression in 75-80% of the cells after 50 days in culture. During embryoid body (EB) differentiation, promoter activities of all five promoters decreased. Although the EF1Ξ± promoter was downregulated in approximately 50% of the cells, it was the most stable promoter during differentiation. Gene expression analysis of differentiated eGFP+ and eGFP- cells indicate that promoter activities might be restricted to specific cell lineages, suggesting the need to carefully select optimal promoters for constitutive gene expression in differentiated hESCs

    NANOG Reporter Cell Lines Generated by Gene Targeting in Human Embryonic Stem Cells

    Get PDF
    Background: Pluripotency and self-renewal of human embryonic stem cells (hESCs) is mediated by a complex interplay between extra- and intracellular signaling pathways, which regulate the expression of pluripotency-specific transcription factors. The homeodomain transcription factor NANOG plays a central role in maintaining hESC pluripotency, but the precise role and regulation of NANOG are not well defined. Methodology/Principal Findings: To facilitate the study of NANOG expression and regulation in viable hESC cultures, we generated fluorescent NANOG reporter cell lines by gene targeting in hESCs. In these reporter lines, the fluorescent reporter gene was co-expressed with endogenous NANOG and responded to experimental induction or repression of the NANOG promoter with appropriate changes in expression levels. Furthermore, NANOG reporter lines facilitated the separation of hESC populations based on NANOG expression levels and their subsequent characterization. Gene expression arrays on isolated hESC subpopulations revealed genes with differential expression in NANOG high and NANOG low hESCs, providing candidates for NANOG downstream targets hESCs. Conclusion/Significance: The newly derived NANOG reporter hESC lines present novel tools to visualize NANOG expression in viable hESCs. In future applications, these reporter lines can be used to elucidate the function and regulation of NANO

    FGF4 and Retinoic Acid Direct Differentiation of hESCs into PDX1-Expressing Foregut Endoderm in a Time- and Concentration-Dependent Manner

    Get PDF
    BACKGROUND: Retinoic acid (RA) and fibroblast growth factor 4 (FGF4) signaling control endoderm patterning and pancreas induction/expansion. Based on these findings, RA and FGFs, excluding FGF4, have frequently been used in differentiation protocols to direct differentiation of hESCs into endodermal and pancreatic cell types. In vivo, these signaling pathways act in a temporal and concentration-dependent manner. However, in vitro, the underlying basis for the time of addition of growth and differentiation factors (GDFs), including RA and FGFs, as well as the concentration is lacking. Thus, in order to develop robust and reliable differentiation protocols of ESCs into mature pancreatic cell types, including insulin-producing beta cells, it will be important to mechanistically understand each specification step. This includes differentiation of mesendoderm/definitive endoderm into foregut endoderm--the origin of pancreatic endoderm. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide data on the individual and combinatorial role of RA and FGF4 in directing differentiation of ActivinA (AA)-induced hESCs into PDX1-expressing cells. FGF4's ability to affect endoderm patterning and specification in vitro has so far not been tested. By testing out the optimal concentration and timing of addition of FGF4 and RA, we present a robust differentiation protocol that on average generates 32% PDX1(+) cells. Furthermore, we show that RA is required for converting AA-induced hESCs into PDX1(+) cells, and that part of the underlying mechanism involves FGF receptor signaling. Finally, further characterization of the PDX1(+) cells suggests that they represent foregut endoderm not yet committed to pancreatic, posterior stomach, or duodenal endoderm. CONCLUSION/SIGNIFICANCE: In conclusion, we show that RA and FGF4 jointly direct differentiation of PDX1(+) foregut endoderm in a robust and efficient manner. RA signaling mediated by the early induction of RARbeta through AA/Wnt3a is required for PDX1 expression. Part of RA's activity is mediated by FGF signaling
    • …
    corecore