1,074 research outputs found
Recommended from our members
Gravity anomalies and flexure of the lithosphere: A three-dimensional study of the Great Meteor Seamount, northeast Atlantic
Simple models for the flexure of the lithosphere caused by the load of the Great Meteor seamount have been determined for different assumed values of the effective flexural rigidity of the lithosphere. The models utilize a new method for determining the flexure of the lithosphere caused by a three-dimensional load. The gravity effect of the models has been computed and compared with observed free-air anomalies in the vicinity of the seamount. Computations show that the observed free-air anomalies can be most satisfactorily explained for an assumed effective flexural rigidity of the lithosphere of about 6×10²⁹ dyn cm. This value, which is similar to other values determined for loads of different ages, suggests that the oceanic lithosphere is rigid enough to support applied loads for periods of time of at least several tens of millions of years
Testing the effect of medical positive reinforcement training on salivary cortisol levels in bonobos and orangutans
The management of captive animals has been improved by the establishment of positive reinforcement training as a tool to facilitate interactions between caretakers and animals. In great apes, positive reinforcement training has also been used to train individuals to participate in simple medical procedures to monitor physical health. One aim of positive reinforcement training is to establish a relaxed atmosphere for situations that, without training, might be very stressful. This is especially true for simple medical procedures that can require animals to engage in behaviours that are unusual or use unfamiliar medical devices that can be upsetting. Therefore, one cannot exclude the possibility that the training itself is a source of stress. In this study, we explored the effects of medical positive reinforcement training on salivary cortisol in two groups of captive ape species, orangutans and bonobos, which were familiar to this procedure. Furthermore, we successfully biologically validated the salivary cortisol assay, which had already been validated for bonobos, for orangutans. For the biological validation, we found that cortisol levels in orangutan saliva collected during baseline conditions were lower than in samples collected during three periods that were potentially stressful for the animals. However, we did not find significant changes in salivary cortisol during medical positive reinforcement training for either bonobos or orangutans. Therefore, for bonobos and orangutans with previous exposure to medical PRT, the procedure is not stressful. Thus, medical PRT provides a helpful tool for the captive management of the two species
Morphological stability of rod-shaped continuous phases
Morphological transition of a rod-shaped phase into a string of spherical particles is commonly observed in the microstructures of alloys during solidification (Ratke and Mueller, 2006). This transition phenomenon can be explained by the classic Plateau-Rayleigh theory which was derived for fluid jets based on the surface area minimization principle. The quintessential work of Plateau-Rayleigh considers tiny perturbations (amplitude much less than the radius) to the continuous phase and for large amplitude perturbations, the breakup condition for the rod-shaped phase is still a knotty issue. Here, we present a concise thermodynamic model based on the surface area minimization principle as well as a non-linear stability analysis to generalize Plateau-Rayleigh’s criterion for finite amplitude perturbations. Our results demonstrate a breakup transition from a continuous phase via dispersed particles towards a uniform-radius cylinder, which has not been found previously, but is observed in our phase-field simulations. This new observation is attributed to a geometric constraint, which was overlooked in former studies. We anticipate that our results can provide further insights on microstructures with spherical particles and cylinder-shaped phases
Machine Learning Assisted Design of Experiments for Solid State Electrolyte Lithium Aluminum Titanium Phosphate
Lithium-ion batteries with solid electrolytes offer safety, higher energy density and higher long-term performance, which are promising alternatives to conventional liquid electrolyte batteries. Lithium aluminum titanium phosphate (LATP) is one potential solid electrolyte candidate due to its high Li-ion conductivity. To evaluate its performance, influences of the experimental factors on the materials design need to be investigated systematically. In this work, a materials design strategy based on machine learning (ML) is employed to design experimental conditions for the synthesis of LATP. In the variation of parameters, we focus on the tolerance against the possible deviations in the concentration of the precursors, as well as the influence of sintering temperature and holding time. Specifically, models built with different design selection strategies are compared based on the training data assembled from previous laboratory experiments. The best one is then chosen to design new experiment parameters, followed by measuring the corresponding properties of the newly synthesized samples. A previously unknown sample with ionic conductivity of 1.09 × 10 S cm is discovered within several iterations. In order to further understand the mechanisms governing the high ionic conductivity of these samples, the resulting phase compositions and crystal structures are studied with X-ray diffraction, while the microstructures of sintered pellets are investigated by scanning electron microscopy. Our studies demonstrate the advantages of applying machine learning in designing experimental conditions by the synthesis of desired materials, which can effectively help researchers to reduce the number of required experiments
Measuring Dissociation Rate Constants of Protein Complexes through Subunit Exchange: Experimental Design and Theoretical Modeling
Protein complexes are dynamic macromolecules that constantly dissociate into, and simultaneously are assembled from, free subunits. Dissociation rate constants, koff, provide structural and functional information on protein complexes. However, because all existing methods for measuring koff require high-quality purification and specific modifications of protein complexes, dissociation kinetics has only been studied for a small set of model complexes. Here, we propose a new method, called Metabolically-labeled Affinity-tagged Subunit Exchange (MASE), to measure koff using metabolic stable isotope labeling, affinity purification and mass spectrometry. MASE is based on a subunit exchange process between an unlabeled affinity-tagged variant and a metabolically-labeled untagged variant of a complex. The subunit exchange process was modeled theoretically for a heterodimeric complex. The results showed that koff determines, and hence can be estimated from, the observed rate of subunit exchange. This study provided the theoretical foundation for future experiments that can validate and apply the MASE method
Screening for Alcoholism Among Medical Inpatients: How Important Is Corroboration of Patient Self-Report?
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65580/1/j.1530-0277.1998.tb03925.x.pd
ceRGC and Vision Loss From Traumatic Optic Neuropathy Indud by Repetitive Closed Head Trauma Is Dependent on Timing and Force of Impact.
Purpose: Traumatic optic neuropathy (TON) is often caused by blunt head trauma and has no currently effective treatment. Common animal models of TON induced by surgical crush injury are plagued by variability and do not mimic typical mechanisms of TON injury. Traumatic head impact models have recently shown evidence of TON, but the degree of head impact necessary to consistently induce TON is not well characterized, and it is examined here.
Methods: Traumatic skull impacts to C57BL/6J mice were induced using an electromagnetic controlled impact device. One impact performed at two depths (mild and severe), as well as three and five repetitive impacts with an interconcussion interval of 48 hours, were tested. Optokinetic responses (OKRs) and retinal ganglion cell (RGC) loss were measured.
Results: Five repetitive mild impacts significantly decreased OKR scores and RGC numbers compared with control mice 10 weeks after initial impact, with maximal pathology observed by 6 weeks and partial but significant loss present by 3 weeks. One severe impact induced similar TON. Three mild impacts also induced early OKR and RGC loss, but one mild impact did not. Equivalent degrees of TON were induced bilaterally, and a significant correlation was observed between OKR scores and RGC numbers.
Conclusions: Repetitive, mild closed head trauma in mice induces progressive RGC and vision loss that worsens with increasing impacts.
Translational Relevance: Results detail a reproducible model of TON that provides a reliable platform for studying potential treatments over a 3- to 6-week time course
Large-Scale Atomistic Simulations of Environmental Effects on the Formation and Properties of Molecular Junctions
Using an updated simulation tool, we examine molecular junctions comprised of
benzene-1,4-dithiolate bonded between gold nanotips, focusing on the importance
of environmental factors and inter-electrode distance on the formation and
structure of bridged molecules. We investigate the complex relationship between
monolayer density and tip separation, finding that the formation of
multi-molecule junctions is favored at low monolayer density, while
single-molecule junctions are favored at high density. We demonstrate that tip
geometry and monolayer interactions, two factors that are often neglected in
simulation, affect the bonding geometry and tilt angle of bridged molecules. We
further show that the structures of bridged molecules at 298 and 77 K are
similar.Comment: To appear in ACS Nano, 30 pages, 5 figure
Assessment of the Mobilizable Vector Plasmids pSUP202 and pSUP404.2 as Genetic Tools for the Predatory Bacterium Bdellovibrio bacteriovorus
Bdellovibrio and like organisms (BALOs) form the group of predatory bacteria which require Gram-negative bacteria as prey. Genetic studies with Bdellovibrio bacteriovorus can be performed with vectors which are introduced into the predator via conjugation. The usefulness of the two vectors pSUP202 and pSUP404.2 as genetic tools were assessed. Both vectors were transferable into B. bacteriovorus by conjugative matings with an Escherichia coli K12 strain as donor. The transfer frequency was higher for vector pSUP404.2 (approx. 10−1–10−4) as for pSUP202 (approx. 10−5–10−6). Vector pSUP202 with a pMB1 origin is unstable in the predatory bacterium, whereas pSUP404.2 is stably maintained in the absence of selective antibiotics. pSUP404.2 harbors two plasmid replicons, the p15A ori and the RSF1010 replication region The copy number of pSUP404.2 was determined by quantitative PCR in B. bacteriovorus and averages seven copies per genome. pSUP404.2 harbors two resistance genes (chloramphenicol and kanamycin) which can be used for cloning either by selection for transconjugants or by insertional inactivation
- …