806 research outputs found

    INHIBITIVE EFFECT OF WRIGHTIA TINCTORIA LEAVES AS GREEN INHIBITOR FOR MILD STEEL IN ACID MEDIUM

    Get PDF
    The inhibition efficacy of Wrightia tinctoria leaves (WTL) extract on mild steel in 1.0N hydrochloric acid with various exposure time (24 to 360hrs) and temperature (313 to 333K) are investigated by mass loss measurements. The value of inhibition efficiency is increased with increase of inhibitor concentration and gradually decreased with rise in temperature is suggestive of physisorption. The adsorption of WTL onto the mild steel surface is found to follow the Langmuir adsorption isotherm. Both kinetic (activation energy and change in heat of absorption) as well as thermodynamics parameters (adsorption of enthalpy, entropy and Gibbs free energy) are calculated and discussed in details. The characterization of alcoholic extract of inhibitor and corrosion products formed on the metal surface is analyzed by UV, FT-IR and SEM spectral studies

    Federated learning with hybrid differential privacy for secure and reliable cross-IoT platform knowledge sharing

    Get PDF
    The federated learning has gained prominent attention as a collaborative machine learning method, allowing multiple users to jointly train a shared model without directly exchanging raw data. This research addresses the fundamental challenge of balancing data privacy and utility in distributed learning by introducing an innovative hybrid methodology fusing differential privacy with federated learning(HDP-FL) Through meticulous experimentation on EMNIST and CIFAR-10 datasets, this hybrid approach yields substantial advancements, showcasing a noteworthy 4.22% and up to 9.39% enhancement in model accuracy for EMNIST and CIFAR-10, respectively, compared to conventional federated learning methods. Our adjustments to parameters highlighted how noise impacts privacy, showcasing the effectiveness of our hybrid DP approach in striking a balance between privacy and accuracy. Assessments across diverse FL techniques and client counts emphasized this trade-off, particularly in non-IID data settings, where our hybrid method effectively countered accuracy declines. Comparative analyses against standard machine learning and state-of-the-art FL approaches consistently showcased the superiority of our proposed model, achieving impressive accuracies of 96.29% for EMNIST and 82.88% for CIFAR-10. These insights offer a strategic approach to securely collaborate and share knowledge among IoT devices without compromising data privacy, ensuring efficient and reliable learning mechanisms across decentralized networks

    Secure and Internet-Less Connectivity to a Blockchain Network for Limited Connectivity Bank Users

    Get PDF
    Over the past few years, we have seen the emergence of a wide range of banking architectures, technologies, and applications made possible by the significant improvements in hardware, software, and networking technologies. Nowadays, innovative solutions are being developed by banks to leverage the benefits of blockchain, to improve their business agility and performance, and to make their business operations more efficient and secure. However, there are still cases where regular access to Internet is impossible or unreliable due to saturated networks or harsh environments, hence limiting the deployment of typical blockchain based solutions. In this context, an approach using a new connectivity technology is needed in order to increase mobile Internet services for any device to reach nearly 95% of the world population, instantly, simply by drawing on existing mobile phone networks, with no additional infrastructure development. We aim to give the user full bank access from their device, even if the device is not a smart one, using ordinary mobile phone networks. However, providing efficient and secure communications over lossy and low bandwidth networks remains a challenge. The main objective of this paper will be to design an end-to-end and low overhead secure solution for the communications between mobile devices and their corresponding remote application servers that using blockchain via ordinary mobile networks

    Human Macrophages Exhibit GM-CSF Dependent Restriction of Mycobacterium tuberculosis Infection via Regulating Their Self-Survival, Differentiation and Metabolism

    Get PDF
    GM-CSF is an important cytokine that regulates the proliferation of monocytes/macrophages and its various functions during health and disease. Although growing evidences support the notion that GM-CSF could play a major role in immunity against tuberculosis (TB) infection, the mechanism of GM-CSF mediated protective effect against TB remains largely unknown. Here in this study we examined the secreted levels of GM-CSF by human macrophages from different donors along with the GM-CSF dependent cellular processes that are critical for control of M. tuberculosis infection. While macrophage of different donors varied in their ability to produce GM-CSF, a significant correlation was observed between secreted levels of GM-CSF, survial of macrophages and intra-macrophage control of Mycobacterium tuberculosis bacilli. GM-CSF levels secreted by macrophages negatively correlated with the intra-macrophage M. tuberculosis burden, survival of infected host macrophages positively correlated with their GM-CSF levels. GM-CSF-dependent prolonged survival of human macrophages also correlated with significantly decreased bacterial burden and increased expression of self-renewal/cell-survival associated genes such as BCL-2 and HSP27. Antibody-mediated depletion of GM-CSF in macrophages resulted in induction of significantly elevated levels of apoptotic/necrotic cell death and a simultaneous decrease in autophagic flux. Additionally, protective macrophages against M. tuberculosis that produced more GM-CSF, induced a stronger granulomatous response and produced significantly increased levels of IL-1β, IL-12 and IL-10 and decreased levels of TNF-α and IL-6. In parallel, macrophages isolated from the peripheral blood of active TB patients exhibited reduced capacity to control the intracellular growth of M. tuberculosis and produced significantly lower levels of GM-CSF. Remarkably, as compared to healthy controls, macrophages of active TB patients exhibited significantly altered metabolic state correlating with their GM-CSF secretion levels. Altogether, these results suggest that relative levels of GM-CSF produced by human macrophages plays a critical role in preventing cell death and maintaining a protective differentiation and metabolic state of the host cell against M. tuberculosis infection

    Risk perception of sars-cov-2 infection and implementation of various protective measures by dentists across various countries

    Get PDF
    Objective: Healthcare workers in general are at a high risk of potential infections with COVID-19, especially those who work with aerosol generating procedures. Dentists fall in this category, as not only do they operate with aerosol generating procedures but also operate within a face-to-face contact area. Methods: A structured self-administered questionnaire was developed at Najran University and provided to the participants for data collection. The data collected included information on risk perception and incorporation of measures for protection against COVID-19 to gauge the attitude of dentists during this period. Also, clinical implementation of various protective measures was reviewed. Results: Of the n = 322 dentists that answered the questions, 50% were general dentists and 28.9% were dentists working at specialist clinics, while the remaining 21.1% of dentists were employed in academic institutions. Among the newer additions to the clinic, 36.3% of dentists answered that they had added atomizers to their practices, followed by 26.4% of dentists that had incorporated the use of UV lamps for sterilization. We found that 18.9% dentists were using HEPA filters in their clinics, while 9.9% of dentists were making use of fumigation devices to control the risk of infection. One-way ANOVA was also carried out to demonstrate that there was a statistically significant difference (p = 0.049) between groups of dentists utilizing HEPA filters, UV lamps, atomizers, and fumigation devices to prevent the spread of SARS-CoV2 across their workplaces. Conclusion: Dentists are aware of recently updated knowledge about the modes of transmission of COVID-19 and the recommended infection control measures in dental settings. A better understanding of the situation and methods to prevent it will ensure that the dental community is able to provide healthcare services to patients during the pandemic

    Using Genetic Diversity in Deep Root Systems of Perennial Forage Grasses and Rice to Capture Carbon in Tropical Soils

    Get PDF
    Agricultural soils have the potential not only to be sinks of carbon dioxide (CO2) but also to mitigate the emissions of this gas to the atmosphere, thus, alleviating global warming. Perennial tropical grasses and rice upland and lowland varieties exhibit a large untapped genetic diversity in their root systems (e.g., deep rooting ability, exudation rates and chemical composition) that, if unlocked, could contribute to increased food production in crop-livestock systems while enhancing soil organic carbon (SOC) in tropical regions. Naturebased solutions that improve crop adaptation and SOC storage in tropical soils could help to remove CO2 from the atmosphere and thereby benefit the global climate system. With the launch of Future Seeds, one of the world’s largest repositories of tropical crop varieties, the Bezos Earth Fund (BEF) granted a major project within the Program of Future of Food. The focus of this BEF funded project is to: (i) develop novel high-throughput phenotyping methods to evaluate genetic diversity of root systems of tropical grasses and rice; (ii) unravel the potential of root systems in crop-livestock systems to replenish soil organic carbon (SOC) in human-intervened areas in tropical soils; (iii) identify and target hotspots/agroecological niches for SOC storage in tropical soils; and (iv) build capacity in conducting research on root systems and SOC storage towards carbon farming in tropical regions. Implementation of land-based SOC storage practices/projects (through carbon markets) based on deep rooting ability of perennial tropical forage grasses and rice cultivars in crop-pasture rotational systems could significantly reduce net emissions from tropical soils

    Clinical peripherality: development of a peripherality index for rural health services

    Get PDF
    BACKGROUND: The configuration of rural health services is influenced by geography. Rural health practitioners provide a broader range of services to smaller populations scattered over wider areas or more difficult terrain than their urban counterparts. This has implications for training and quality assurance of outcomes. This exploratory study describes the development of a "clinical peripherality" indicator that has potential application to remote and rural general practice communities for planning and research purposes. METHODS: Profiles of general practice communities in Scotland were created from a variety of public data sources. Four candidate variables were chosen that described demographic and geographic characteristics of each practice: population density, number of patients on the practice list, travel time to nearest specialist led hospital and travel time to Health Board administrative headquarters. A clinical peripherality index, based on these variables, was derived using factor analysis. Relationships between the clinical peripherality index and services offered by the practices and the staff profile of the practices were explored in a series of univariate analyses. RESULTS: Factor analysis on the four candidate variables yielded a robust one-factor solution explaining 75% variance with factor loadings ranging from 0.83 to 0.89. Rural and remote areas had higher median values and a greater scatter of clinical peripherality indices among their practices than an urban comparison area. The range of services offered and the profile of staffing of practices was associated with the peripherality index. CONCLUSION: Clinical peripherality is determined by the nature of the practice and its location relative to secondary care and administrative and educational facilities. It has features of both gravity model-based and travel time/accessibility indicators and has the potential to be applied to training of staff for rural and remote locations and to other aspects of health policy and planning. It may assist planners in conceptualising the effects on general practices of centralising specialist clinical services or administrative and educational facilities

    Emerging Variants Develop Total Escape From Potent Monoclonal Antibodies Induced by BA.4/5 Infection

    Get PDF
    The rapid evolution of SARS-CoV-2 is driven in part by a need to evade the antibody response in the face of high levels of immunity. Here, we isolate spike (S) binding monoclonal antibodies (mAbs) from vaccinees who suffered vaccine break-through infections with Omicron sub lineages BA.4 or BA.5. Twenty eight potent antibodies are isolated and characterised functionally, and in some cases structurally. Since the emergence of BA.4/5, SARS-CoV-2 has continued to accrue mutations in the S protein, to understand this we characterize neutralization of a large panel of variants and demonstrate a steady attrition of neutralization by the panel of BA.4/5 mAbs culminating in total loss of function with recent XBB.1.5.70 variants containing the so-called \u27FLip\u27 mutations at positions 455 and 456. Interestingly, activity of some mAbs is regained on the recently reported variant BA.2.86
    corecore